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This is the guide to the practical course for QC2.
The course material can be found here.
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2 SETUP



CHAPTER

ONE

SETUP PREREQUISITES

To start with this course, you need the to install necessary programs and setup your system to allow programming. De-
pending on the platform and operating systems you are using the steps differ but eventually you should be able to use the
course material independently of your platform.

Important: If you are working at a CIP pool computer in the Mulliken Center for Theoretical Chemistry we have taken
care for you about the setup and you can immediately continue with the next chapter.

Contents

• Setup Prerequisites
– Windows 10

∗ Install MSYS2
∗ Install WSL
∗ Install Linux Distribution

– Ubuntu

∗ Fortran package manager from conda

– MacOS

∗ Installing with Homebrew

3
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1.1 Windows 10

There are multiple ways to enable your Windows system for development. For this course we will present two methods,
either running natively (see Install MSYS2) or with a virtualisation of a Linux subsystem (see Install WSL).

1.1.1 Install MSYS2

The MSYS2 project provides a package manager and makes many common Unix tools available for Windows. It comes
with its own bash-like shell which allows to easily follow this course.
Download the msys2-x86_64-YYYYMMDD.exe installer from the MSYS2 webpage and run the installer. MSYS2
will create three new desktop shortcuts: MSYS terminal, MinGW64 terminal and MinGW32 terminal (more information
on MSYS2 terminals is available here).
You can either use the MSYS terminal or the MinGW64 terminal for this course we recommend to use the latter.
Open a new terminal and update your installation with

pacman -Syu

You might have to update MSYS2 and pacman first, restart the terminal and run the above command again to update
the installed packages.
If you are using the MinGW64 terminal you can install the required software with

pacman -S git mingw-w64-x86_64-gcc-fortran mingw-w64-x86_64-make mingw-w64-x86_64-fpm␣
↪→vim

If you use the MSYS terminal leave out the mingw-w64-x86_64 prefixes to install the required software.
After having installed the necessary software, you need to download the course material. Unzip the
course-material.zip archive to your home directory and you are setup to start with the next chapter.

Note: Your home directories C:\Users\<name> will be accessible under /c/Users/<name> in the MSYS2
terminals, look there if you are searching for your downloaded files.

Tip: The content of the archive might be potentially important as a starting point for your SCF program later.

1.1.2 Install WSL

With Windows 10 comes the possibility to integrate a Linux Console to your Windows PC via the Windows Subsystem
for Linux (WSL). This is in particular useful for you as a Windows user to participate in our Linux based course from
home. This guide will show you how to use WSL in order to install a Unix-based console that allows you to complete all
the tasks of the course (it is basically a shortened version of the Microsoft documentation for installing WSL).
In order to install WSL, you first have to enable the optionalWSL feature. Open theWindows PowerShell as administrator
(for example by typing powershell in the search field of the taskbar).

4 Chapter 1. Setup Prerequisites
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Type the following command in PowerShell and press <Enter>:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux

Afterwards please restart your computer if you are asked to.

1.1.3 Install Linux Distribution

You can now install a Linux distribution of your choice to use with WSL. We recommend Ubuntu. You can install it from
the Microsoft Store. Just type Ubuntu in the search field and download the application.

1.1. Windows 10 5
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After the installation was successful, you can start the Linux distribution. Ubuntu will open a console and install itself.
You will be ask to choose a username and a password. Those are equivalent to the ones you would choose on a real
Ubuntu machine.

Your new console will now show linuxusername@hostname:/some/path$, similar to an Ubuntu console.
linuxusername is your chosen username in the Linux distribution and hostname the name of your computer. The
directory in which the window is opened (/some/path) will probably be your Linux home directory ~ (see Shell in a
nutshell). Note that this home directory can not simply be accessed via the Windows explorer. But the other way around,
you can find your Windows home directory in /mnt/c/Users/windowsusername, where windowsusername
is your username on yourWindows computer. If you want to open new files with someWindows program, we recommend
to create and save all new files in the mentioned directory or subfolders of it.
You can now also access your Linux console through a Windows console such as CMD. To open CMD, just type cmd in
the search field of the Windows taskbar and press Enter. By entering the command wsl or bash, you will change to
the Linux console in your current directory which is your Windows home directory.
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Note: If you feel advanced in handling the shown terminals of different distributions on your Windows computer, you
can try the Windows Terminal. It allows you to manage your WSL terminals and may make your home office more
comfortable. However, it is still a preview release and thus the installation might require some effort.

You have now successfully installed a Linux console on your Windows computer and can continue with the Ubuntu part
of this documentation (see Ubuntu).

1.2 Ubuntu

Starting with a fresh version of Ubuntu 18.04 we have to install a few programs first. You have to install the packages:
git, gfortran, make, and vim. We will assume you are working with apt to install packages, in case you prefer
another package manager, feel free to install the packages listed here with this one (see Ubuntu install & remove software).

sudo apt install git gfortran make vim

Note: Some packages, especially vim and make might already be installed on your system, but it does not harm to
include them here again.

For the programming course we recommend to use the Fortran package manager (fpm), which can be downloaded from
here. or setup from conda-forge as described in Fortran package manager from conda.
After having installed the necessary software, you need to download the course material. Unzip the
course-material.zip archive to your home directory and you are setup to start with the next chapter.

Tip: The content of the archive might be potentially important as a starting point for your SCF program later.

1.2.1 Fortran package manager from conda

You can install the Fortran package manager (fpm) easily from conda-forge, a large scientific software repository. To do
so, download a mambaforge installer from the conda-forge project. For Ubuntu Mambaforge-Linux-x86_64.sh
is the correct choice. Run the installer as user (no sudo required) to setup your conda base environment:

sh Mambaforge-Linux-x86_64.sh

Your prompt should now show a (base) label in front, which signals you that you now have access to the mamba package
manager and the conda environment manager.

Note: Those two tools, mamba and conda, are very powerful to create reproducable development and production en-
vironments for scientific work. For this course they allow us to easily install software, that would be difficult to install
otherwise or software which is not yet available in all Linux distributions. Many of our groups software is available over
conda-forge as well.

To add Fortran package manager (fpm) to your base environment run

mamba install fpm

1.2. Ubuntu 7
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Tip: Alternatively, you can create a separate environment for fpm with

mamba create -n fpm fpm
conda activate fpm

When creating a separate environment, you will always have to activate it after starting a new shell, but it allows you more
fine grained control over your installed software.

1.3 MacOS

To setup your MacOS for the course follow this steps
1. Install Xcode from the the App Store
2. Open a terminal from /Applications/Utilities/
3. Install command line tools with

xcode-select --install

4. Install gfortran either by installing it from here or by using Homebrew (see Installing with Homebrew)
5. Install the Fortran package manager from conda (see Fortran package manager from conda) or homebrew (see

Installing with Homebrew)

Important: The default shell on MacOS is not bash, but a zsh, but they should be mostly compatible. In case you
want to follow the course with a bash start a new bash instance after opening your terminal with

exec bash

After having installed the necessary software, you need to download the course material. Unzip the
course-material.zip archive to your home directory and you are setup to start with the next chapter.

Note: Some of the keyboard shortcuts in the next chapter are targeted at Linux OS, you probably have to use the cmd
key instead of the ctrl key.

1.3.1 Installing with Homebrew

You can manage packages for your Mac using homebrew. To install homebrew download the installation script from the
official homebrew channel at GitHub:

curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install.sh >␣
↪→install-homebrew.sh
/bin/bash install-homebrew.sh

The script will ask you a few questions to complete the installation process, for more information on the homebrew
installation check their documentation.
To install gfortran we will install the gcc formula, where it is included, with
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brew install gcc

Additionally, install the Fortran package manager (fpm) with

brew tap awvwgk/fpm
brew install fpm

1.3. MacOS 9
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CHAPTER

TWO

WORKING ON LINUX

As you participate in this lab exercise, you must have at least a basic knowledge of working with a Linux computer.
This chapter shows you the basic commands to get along with your computational environment. First of all, you will be
provided with a username and a password. This represents your user account for the whole lab course and all the data
you produce is available with this information.

Note: Some of the keyboard shortcuts in this chapter are targeted at the setup of the CIP Pool computers in the Mulliken
Center for Theoretical Chemistry and might not work as expected for you.
In case you use KDE, everything will probably work just fine, if you use another OS or windowmanager commands might
differ slightly.

Contents

• Working on Linux
– Login

– Shell in a nutshell

– Editors

∗ VSCode
∗ Vim

2.1 Login

The first thing you will see after booting the computer is the login-screen.
Dependent on the Linux version you are using this screen may look slightly different. After you typed in your username
and password you press the <Return> key and the graphical desktop will be loaded. All further actions will take place
in this environment. The next and certainly most important thing is to access the Linux command line. This is usually
done by starting a terminal-emulator, which is called shell or terminal. On the machines you are using there should be a
quick start icon directly on the desktop. By clicking on this icon, a window is opened which allows you to communicate
with the PC in a command-line mode.

11
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2.2 Shell in a nutshell

After executing the terminal-emulator you will end up with a window, which looks similar to the following image:

ehlert@c01:~> pwd
/home/ehlert
ehlert@c01:~> ls
Desktop Music QCII
Documents Pictures Templates
Downloads Public Videos
ehlert@c01:~> cd QCII
ehlert@c01:~/QCII>

On the left, you can see the so-called prompt. Depending on the default settings of your system it provides you with
various information. In a standard configuration, it will show: username@hostname:~>, where username is your
username, hostname is the name of the computer and the tilde (~) shows that you are currently located in your home
directory (/home/username). The Linux file structure follows the Filesystem Hierarchy Standard, which ensures a
similar file structure on every version of Linux you can get. As you work with the system you will rapidly gain experience
with the different directories and their purposes. For now, you should know that you are in your home directory which is
located at /home/username and is abbreviated by ~.
With your user account you have the power to create, edit, and delete files in your home directory at will. But with great
power comes great responsibility. You have to be careful with the commands you execute when you delete or overwrite
a file it is gone for good. With that in mind, we can now start with the first couple of commands. To see exactly which
directory you are in, type pwd (print working directory) and press <Return>. Since you are in your home directory,
this will print the path to that home directory to the screen. Note that all input in the terminal is case-sensitive.

ehlert@c01:~> pwd
/home/ehlert

Next thing we want to know is what is inside our current location, for this we use the command ls, short for list:

ehlert@c01:~> ls
Desktop Music QCII
Documents Pictures Templates
Downloads Public Videos

We can add options to the ls command like -l to use the use a long listing format:

ehlert@c01:~> ls -l
total 574500
drwxr-xr-x 2 ehlert thch 4096 Jun 7 2018 Desktop
drwxr-xr-x 2 ehlert thch 4096 Jun 7 2018 Documents
drwxr-xr-x 2 ehlert thch 4096 Jun 7 2018 Downloads
drwxr-xr-x 2 ehlert thch 4096 Jun 7 2018 Music
drwxr-xr-x 2 ehlert thch 4096 Jun 7 2018 Pictures
drwxr-xr-x 2 ehlert thch 4096 Jun 7 2018 Public
drwxr-xr-x 4 ehlert thch 4096 Jan 14 09:09 QCII
drwxr-xr-x 2 ehlert thch 4096 Jun 7 2018 Templates
drwxr-xr-x 2 ehlert thch 4096 Jun 7 2018 Videos

Alternatively we can provide ls with a path, it will then list all the files within this directory

ehlert@c01:~> ls QCII
tutorial scf

Of course we can also combine options and paths for ls.
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Youmight wonder what a path is, wewill go intomore detail above them now as they are important for working with Linux.
Whenever we refer to a file or a directory on the commandline we are in fact referring to its path. A path is identifying a
particular file or directory on the system. Your filesystem starts at the root / and can be referenced absolutely from this
root or relative from your current working directory. Every directory has at least two links to other directories, to itself .
(dot) and to its parent .. (dotdot), which can be used to build paths to reference to any file or directory on your system.
Up to now we only looked around, but we can also change the directory, which is done by the command cd, short for
change directory.

ehlert@c01:~> cd QCII
ehlert@c01:~/QCII> cd .
ehlert@c01:~/QCII> cd ../..
ehlert@c01:/home> cd -
/home/ehlert/QCII
ehlert@c01:~/QCII> cd
ehlert@c01:~>

What did just happen?
1. We changed to the QCII directory. Our prompt helpfully reports that we are now in the QCII directory, so usually

there is no need to use pwd.
2. Next we change to the directory itself using its dot link, and we stay in the same directory as expected.
3. Now we change to the parent directory of the QCII parent directory, which is the parent directory of our home

directory. You can easily chain links together using the slash character /.
4. In case a change directory brings you to the wrong place you can always go back to the last directory you visited

by cd -. The absolute path of the directory is also printed so we can be sure to be in the right place.
5. To go back to your home directory use cd without an argument.

We differenciated files and directories above, which is not quite true, in Linux everything is a file, also a directory, even
your keyboard is a file (one which is only read from), your monitor is also a file (one which is only written to). It will not
affect us when working with Linux but it is helps to keep it in mind when trying to understand how Linux manages files
and directories.
A standard set of commands is shown in the following table:

command description
pwd print the working directory
ls lists the files in the current directory
cd <name> change to the directory with <name>
cd .. change to the parent directory
cp <old> <new> copy file <old> to <new>
cp -r <old> <new> copy directory <old> to <new>
mv <old> <new> move (rename) file/directory
rm <name> remove file with <name>
rm -r <name> remove directory recursively (caution!)
mkdir <name> make a new directory with <name>
rmdir <name> remove (empty) directory with <name>

This is only a very basic list of commands available and some of them have a huge variety of options that can not be
listed here, and will hardly concern you. For all options the program can be started with <command> --help and a
complete summary can be found in its manual page by man <command>.

Exercise 1
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To get familiar with the shell try to achieve the following task
1. change to the QCII directory
2. find or create the tutorial directory in QCII
3. rename the tutorial directory to shell tutorial

4. change to the newly created directory

Solutions 1
A sequence of this command would achieve the wished results.

username@hostname:~> cd QCII
username@hostname:~/QCII> ls tutorial
tutorial
username@hostname:~/QCII> mv tutorial shell tutorial
mv: cannot move 'tutorial' to a subdirectory of itself, 'tutorial/tutorial'
mv: cannot stat 'shell': No such file or directory
username@hostname:~/QCII> mv tutorial 'shell tutorial'
username@hostname:~/QCII> cd shell\ tutorial
username@hostname:~/QCII/shell tutorial>

Note that you have to escape the space in shell tutorial in some way.

2.3 Editors

To access and edit any text file in Linux you will need an editor. A huge variety of editors exist and your difficult task
is to pick the one you are most comfortable with. We introduce the most common ones in this chapter, but feel free to
work with the editor that fits you the best.

2.3.1 VSCode

vscode is a powerful, cross-platform source code editor. It benefits from a rich ecosystem of extensions that provides
support for all common programming languages including features like syntax highlighting, intellisense and many more.
It is well suited for large programming projects and the preferred choice in our group.
The installation instructions can be found here.
Since you will be writing Fortran code, you want to install the Modern Fortran extension, which you can find via the
extensions tab (Ctrl+Shift+X) within VSCode. For additional features, check out the Language Server Integration.
You can also install a Vim emulator (see below) for VSCode to enable most of Vim’s functionalities.
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2.3.2 Vim

vim is a very powerful and lightweight editor, once you have mastered the initial steep learning curve. It has the advantage
of being installed by default on almost any Linux machine and is even fully usable without a graphical user interface.
However, getting past the initial learning curve can take the better part of a month, but having truly mastered vim usually
results in a huge performance gain when developing. We encourage you to pick up vim instead of vscode.
To get started with vim open a new terminal (type <alt>-<F2> for the quick launch menu, then type konsole or
search for it in the menu) and type vimtutor. This will launch an instance of vim with an extensive introduction for
using it, follow the instructions until you feel confident navigating and editing files with vim.

Attention: Don’t read past this note without finishing vimtutor!

To make working with vim easier for you, we provide this .vimrc for you:

Listing 1: ~/.vimrc
" Defaults for new vim users.
source $VIMRUNTIME/defaults.vim
" Ignore this filetypes in the wildmenu
set wildignore=*.o,*~,*.pyc,*.mod
" Make search case insensitive, but only as long as it contains only lowercase
set ignorecase
set smartcase
" Automatic indentation
set autoindent
set smartindent
set tabstop=4
set shiftwidth=4
set smarttab
set expandtab
" Fortran specific options
let fortran_do_enddo=1
let fortran_free_source=1

In case it is not yet in your .vimrc we recommend copying, if you are not happy with something we put in here, feel
free to modify or replace it, you can also add new configurations if you like.
After you have covered the basics, there are some tricks you might find useful.

Tip: We recommend working with a single instance of vim in one terminal, if used right vim can provide all functions
from your file navigator and terminal.

1. Open your current working directories with vim . and you will find yourself in the netrw file navigator.
2. Navigate to a file you would like to open and hit <Enter>, it will be opened in the same vim instance, to get back

type :E in normal mode and find yourself back in netrw.
3. To open a new window type <ctrl>-w n, you can close the window again with <ctrl>-w q or by typing :q

as usual.
4. To open a second window you can split your vim window by using <ctrl>-w v (for vertical splitting) or

<ctrl>-w s (for horizontal splitting) to have two windows with the same file which can be used independently.

2.3. Editors 15
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Tip: If your vim instance freeze, you hit <ctrl>-s by accident, which tells the hosting terminal to freeze, unfreeze
it with <ctrl>-q.

5. If you have your mouse enabled for vim you can jump between windows by clicking into another window, the
faster way is to use <ctrl>-w w to go to the next window.

Make yourself familiar with navigation between multiple windows by creating, closing and jumping between multiple
windows. You can yank and paste content between the windows that way, which allows seamless transfer between different
files.

6. Now go in one of the windows back to netrw, we want to create a new directory without using :!mkdir ...,
type d in normal mode in your netrw instance and you should be prompted to provide a name.

7. You can delete it again with D, do so by moving your cursor over the file or directory and press D, then accept your
choice in the prompt.

8. Now we want a new file, the easiest way would be :e ..., but this path has to be relative from the working
directory we started our vim instance in, so we use netrw instead and type % which prompts as to provide a name
and opens the new file afterward in a new vim window.

Let’s open a new file hello.f90 and enter

1 program hello
2 implicit none
3 write(*, '(a)') "My first Fortran program"
4 end program hello

Tip: In case the syntax highlighting looks strange, vim is trying to use Fortran 77 highlighting, add let for-
tran_free_source=1 to your .vimrc to get the correct Fortran 90 highlighting and restart vim for it to take
effect.

After saving the file, compile and run it by typing :!gfortran % && ./a.out, you should see something like this
printout in your terminal:

My first Fortran program

Press ENTER or type command to continue

The first line is from your program, the second one is produced by vim.

Note: To switch between your terminal and vim use <ctrl>-z to stop vim and get it back from the terminal by using
the command fg.

At this point, you should be ready to use vim in production, happy coding.

16 Chapter 2. Working on Linux



CHAPTER

THREE

INTRODUCTION TO FORTRAN

Contents

• Introduction to Fortran
– General Principles

– Compiling and Running a Program

– The Fortran package manager

– Introducing Variables

– Performing Simple Computing Tasks

– Accuracy of Numbers

– Logical Constructs

– Repeating Tasks

– Fields and Arrays of Data

– Functions and Subroutines

– Multidimensional Arrays

– Character Constants and Variables

– Interacting with Files

– Application

– Derived Types

Note: To learn any new programming language good learning resources are important. This introduction covers the
basic language features you will need for this course but Fortran offers much more functionality.
Good resources can be found at fortran-lang.org. Especially the learn category offers useful introductory material to
Fortran programming and links to additional resources.
The fortran90.org offers a rich portfolio of Fortran learning material. For students with prior experience in other pro-
gramming languages like Python the Rosetta Stone might offer a good starting point as well.
Also, the Fortran Wiki has plenty of good material on Fortran and offers a comprehensive overview over many language
features and programming models.
An active forum of the Fortran community is the fortran-lang discourse. While we offer our own forum solution for this
course to discuss and troubleshoot, you are more than welcome to engage with the Fortran community there as well. Just
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be mindful when starting threads specific to this course and tag them as Help or Homework.

3.1 General Principles

Programming is the art of telling a computer what to do, usually to perform an action or solve a problem which would be
too difficult or laborious to do by hand. It thus involves the following steps:

1. Understanding the problem.
2. Formulating an approach/algorithm to the problem.
3. Translating the algorithm into a computer–compatible language: Coding
4. Compiling and running the program.
5. Analyzing the result and improving the program if necessary or desired.

This manual assumes that steps 1 and 2 have already been taken care of in the Quantum Chemistry I module. We will
thus concern ourselves with the problems of translating an algorithm or a formula, spelled out on paper, to something the
computer understands first.

3.2 Compiling and Running a Program

Before beginning to write computer code or to code in short, one needs to choose a programming language. Many of
them exist: some are general, some are specifically designed for a task, e.g. web site design or piloting a plane, some
have simple data structures, some have very special data structures like census data, some are rather new and follow very
modern principles, some have a long history and thus rely on time-tested concepts.
In the case of this module, the Fortran programming language is chosen because it makes for code that is rather rapidly
written with decent performance. It is also in frequent use in the field of quantum chemistry and scientific computing.
The name Fortran is derived from Formula Translation and indicates that the language is designed for the task at hand,
translating scientific equations into computer code.
Let’s take a look at a complete Fortran program.

Listing 1: hello.f90
1 program hello
2 write(*, *) "This is probably the simplest Fortran program"
3 end program hello

If you were to execute this program, it would simply display its message and exit.

Exercise 1
Open a new file in an editor and save as hello.f90 in a new directory in your project directory, you will always create
a new directory for each exercise.
Type in the program above. Fortran is case-insensitive, i.e. it mostly does not care about capitalization. Save the code to
a file named hello.f90. All files written in the Fortran format must have the .f90 extension.
Next, you will check that the file you created is where you need it, translate your program using the compiler gfortran
to machine code. The resulting binary file can be executed, thus usually called executable.
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Listing 2: shell
gfortran hello.f90 -o helloprog
./helloprog
This is probably the simplest Fortran program.

Directly after the gfortran command, you find the input file name. The -o flag allows you to name your program.
Try to leave out the -o helloprog part and translate hello.f90 again with gfortran. You will find that the
default name for your executable is a.out. They should produce the same output.

Now that we can translate our program, we should check what it needs to create an executable, create an empty file
empty.f90 and try to translate it with gfortran.

Listing 3: shell
gfortran empty.f90
/usr/bin/ld: /usr/lib/Scrt1.o: in function `_start':
(.text+0x24): undefined reference to `main'
collect2: error: ld returned 1 exit status

This did not work as expected, gfortran tells you that your program is missing a main which it was about to start.
The main program in Fortran is indicated by the program statement, which is not present in the empty file we gave to
gfortran.

Important note about errors
Errors are not necessarily a bad thing, most of the programs you will use in this course will return useful error messages
that will help you to learn about the underlying mechanisms and syntax.
Just consider it as an error driven development technique!

Let us reexamine the code in hello.f90, The first line is the declaration section which starts the main program and
gives it an arbitrary name. The third line is the termination section which stops the execution of the program again and
tells the compiler that we are done. The name used in this section has to match the declaration section.
Everything in between is the execution section, each statement in this section is executed when calling the translated
program. We use the write(*, *) statement which causes the program to display whatever is behind it until the end
of the line. The double quotes enclosing the sentence make the program recognize that the following characters are just
that, i.e., a sequence of characters (called a string) and not programming directives or variables.

3.3 The Fortran package manager

The Fortran package manager (fpm) is a recent advancement introduced by the Fortran community. It helps to abstract
common tasks when developing Fortran applications like building and running executables or creating new projects.

Warning: The Fortran package manager is still a relatively new project. Using new and recent software always has
some risks of running into unexpected issues. We have carefully evaluated fpm and the advantage of the simple user
interface outweighs potential issues.
This course is structured such that it can be completed with or without using fpm.

3.3. The Fortran package manager 19
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Note: If you are doing this course on a machine in the Mulliken center you have to activate the fpm installation by using
the module commands:

Listing 4: shell
export BASH_ENV=/usr/share/lmod/lmod/init/bash
. ${BASH_ENV} > /dev/null
module use /home/abt-grimme/modulefiles
module load fpm

To make access to fpm permanent, add these lines to your .bashrc file in your home directory.

Listing 5: shell
# make environment modules available
export BASH_ENV=/usr/share/lmod/lmod/init/bash
. ${BASH_ENV} > /dev/null

# load fpm
module use /home/abt-grimme/modulefiles
module load fpm

Create a new project with fpm by

Listing 6: shell
fpm new --app myprogram

This will initialize a new Fortran project with a simple program setup. Enter the newly created directory and run it with

Listing 7: shell
cd myprogram
fpm run
...
hello from project myprogram

You can inspect the scaffold generated in app/main.f90 and find a similar program unit as in your very first Fortran
program:

Listing 8: app/main.f90
1 program main
2 implicit none
3

4 print *, "hello from project myproject"
5 end program main

Modify the source code with your editor of choice and simply invoke fpm run again. You will find that fpm takes care of
automatically rebuilding your program before running it.

Tip: By default fpm enables compile time checks and run time checks that are absent in the plain compiler invocation.
Those can help you catch and avoid common errors when developing in Fortran.
To read more on the capabilities of fpm check the help page with
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fpm help

3.4 Introducing Variables

The string we have printed in our program was a character constant, thus we are not able to manipulate it. Variables are
used to store and manipulate data in our programs, to declare variables we extend the declaration section of our program.
We can use variables similar to the ones used in math in that they can have different values. Within Fortran, they cannot
be used as unknowns in an equation; only in an assignment.
In Fortran, we need to declare the type of every variable explicitly, this means that a variable is given a specific and
unchanging data type like character, integer or real. For example, we could write

Listing 9: numbers.f90
1 program numbers
2 implicit none
3 integer :: my_number
4 my_number = 42
5 write(*, *) "My number is", my_number
6 end program numbers

Now the declaration section of our program in line 1-3, the second line declares that we want to declare all our variables
explicitly. Implicit typing is a leftover from the earliest version of Fortran and should be avoided at all cost, therefore
you will put the line implicit none in every declaration you write from now on. The third line declares the variable
my_number as type integer.
Line 4 and 5 are the executable section of the program, first, we assign a value to my_number, then we are printing it to
the screen.

Exercise 2
Make a new directory and create the file numbers.f90 where you type in the above program. Then translate it with
gfortran with
gfortran
fpm

gfortran numbers.f90 -o numbers_prog
./numbers_prog

My number is 42

fpm run
+ build/gfortran_debug/app/myproject
My number is 42

Despite being a bit oddly formatted the program correctly returned the number we have written in numbers.f90.
numbers_prog will now always return the same number, to make the program useful, we want to have the program
read in our number.
Use the read(*, *) statement to provide the number to the program, which works similar to the write(*, *)
statement.
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Solutions 2
We replace the assignment in line 4 with the read(*, *) my_number and then translate it to a program.
gfortran
fpm

gfortran numbers.f90 -o numbers_prog
./numbers_prog
31

My number is 31

fpm run
+ build/gfortran_debug/app/myproject

31
My number is 31

If you now execute numbers_prog the shell freezes. We are now exactly at the read statement and the num-
bers_prog is waiting for your action, so go ahead and type a number.
You might be tempted to type something like four:
gfortran
fpm

./numbers_prog
four
At line 4 of file numbers.f90 (unit = 5, file = 'stdin')
Fortran runtime error: Bad integer for item 1 in list input

Error termination. Backtrace:
#0 0x7efe31de5e1b in read_integer

at /build/gcc/src/gcc/libgfortran/io/list_read.c:1099
#1 0x7efe31de8e29 in list_formatted_read_scalar

at /build/gcc/src/gcc/libgfortran/io/list_read.c:2171
#2 0x7efe31def535 in wrap_scalar_transfer

at /build/gcc/src/gcc/libgfortran/io/transfer.c:2369
#3 0x7efe31def535 in wrap_scalar_transfer

at /build/gcc/src/gcc/libgfortran/io/transfer.c:2346
#4 0x56338a59f23b in ???
#5 0x56338a59f31a in ???
#6 0x7efe31867ee2 in ???
#7 0x56338a59f0fd in ???
#8 0xffffffffffffffff in ???

fpm run
+ build/gfortran_debug/app/numbers
Enter an integer value

four
At line 5 of file app/main.f90 (unit = 5, file = 'stdin')
Fortran runtime error: Bad integer for item 1 in list input

Error termination. Backtrace:
#0 0x7fb170e6ffdb in read_integer

at /build/gcc/src/gcc/libgfortran/io/list_read.c:1099
#1 0x7fb170e73229 in list_formatted_read_scalar

(continues on next page)
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(continued from previous page)
at /build/gcc/src/gcc/libgfortran/io/list_read.c:2171

#2 0x561f44a562a0 in numbers
at app/main.f90:5

#3 0x561f44a5637f in main
at app/main.f90:7

Command failed
ERROR STOP

So we got an error here, the program is printing a lot of cryptic information, but the most useful lines are near to our
input of four. We have produced an error at the runtime of our Fortran program, therefore it is called a runtime error,
more precise we have given a bad integer value for the first item in the list input at line 4 in numbers.f90. That was
very verbose, Fortran expected an integer, but we passed a character to our read statement for my_number.
We could try to make our program more verbose by adding some information on what kind of input we expect to avoid
this sort of errors. A possible solution would look like

Listing 10: numbers.f90
1 program numbers
2 implicit none
3 integer :: my_number
4 write(*, *) "Enter an integer value"
5 read(*, *) my_number
6 write(*, *) "My number is", my_number
7 end program numbers

While this will not prevent wrong input it will make it more unlikely by clearly communicating with the user of the
program what we are expecting.

3.5 Performing Simple Computing Tasks

Next, you will make your program perform simple computational tasks – in this case, add two numbers.
So let’s examine the following code:

Listing 11: add.f90
1 program add
2 implicit none
3 ! declare variables: integers
4 integer :: a, b
5 integer :: res
6

7 ! get two values to be stored in a and b
8 read(*, *) a, b
9

10 res = a + b ! perform the addition
11

12 write(*, *) "The result is", res
13 end program add

Again we declare our program and give it a useful name describing the task at hand. The second statement is used to
explicitly declare all variables and will be present in any program we write from now on.
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The third line is a comment, any text after the exclamation mark is considered to be a comment in Fortran and is ignored
by the compiler. Since it does not affect the final program we can use comments to remind ourselves why we choose to do
something particular, the intent of the statement or to describe what the program is doing. In the beginning, you should
comment your code as much as possible such that you will still understand them in a year from now. It is completely fine
to produce more comment lines than lines of code to keep your program understandable. Also notice that Fortran does
not care much about leading spaces (indentation) or empty lines, so we can use them to give our code a visual structure,
which makes it more appealing and easier to read.
The comment states that we will declare our variables as integers, we have two integer declarations here, once for a and
b, comma-separated on the same line and the next line an integer declaration for res. We could put a, b, res on
one line, but we might want to separate our input and result variables visually.
The next statement is in line 8 in the executable section of the code and reads values into a and b. Afterward, we perform
the addition a + b and assign the result to res. Finally, we print the result and exit the program again.

Exercise 3
Create the file add.f90 from the manual and modify it to make it do the following and check

1. Display a message to the user of your program (via write statements) about what kind of input is to be entered by
them.

2. Read values from the console into the variables a and b, which are then multiplied and printed out. For error
checking, print out the values a and b in the course of your program.

3. What happens if you provide input like 3.14?
4. Perform a division instead of a multiplication. Attempt to obtain a fraction.

Solutions 3
As before we add a line like write(*, *) "Enter two numbers to add" before the read statement. We can
do something similar like in numbers for both a and b to echo their values, the resulting shell history should look similar
to this
gfortran
fpm

gfortran add -o add_prog
./add_prog

Enter two numbers to add
11 31

The value of a is 11
The value of b is 31
The result is 42

./add_prog
Enter two numbers to add

-8
298

The value of a is -8
The value of b is 298
The result is 290

fpm run
+ build/gfortran_debug/app/add
Enter two numbers to add

(continues on next page)
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(continued from previous page)
11 31

The value of a is 11
The value of b is 31
The result is 42

fpm run
+ build/gfortran_debug/app/add
Enter two numbers to add

-8
298

The value of a is -8
The value of b is 298
The result is 290

The input seems to be quite forgiving and we can also add negative numbers. While this sounds obvious it is a common
pitfall in other languages, but in Fortran all integers are signed and there is no unsigned version like in C.
To change the arithmetic operation in our code we have to know the operator used in Fortran to perform anything beyond
addition. We can use + for addition, - for subtraction, * for multiplication, / for division and ** exponentiation.
We will skip the resulting output of the multiplication, except for one interesting case (you should have created a new
file and a new program for the multiplication, since there is nothing worse than a program called add_prog performing
multiplications).
gfortran
fpm

./multiply_prog
Enter two numbers to multiply

1000000 1000000
The value of a is 1000000
The value of b is 1000000
The result is -727379968

fpm run
+ build/gfortran_debug/app/muliply
Enter two numbers to multiply

1000000 1000000
The value of a is 1000000
The value of b is 1000000
The result is -727379968

which is kind of surprising. Take a piece of paper or perform the multiplication in your head, you will probably something
pretty close to 1,000,000,000,000 instead of -727,379,968, but the computer is not as smart as you. We choose the
default kind of the integer data types which uses 32 bits (4 bytes) to represent whole numbers in a range from -
2,147,483,648 to +2,147,483,648 or –231 to +231 using two’s complement arithmetic, since the expected result is too
large to be represented with only 32 bits (4 bytes), the result is truncated and the sign bit is left toggled which results in a
large negative number (which is called an integer overflow, to understand why that makes sense lookup two’s complement
arithmetic).
Usually, you do not have to worry about exceeding the 32 bits (4 bytes) of precision since we have data types that can
represent such large numbers in a better way.
Finally, think carefully about the result you expect when performing division with integers. Test your hypothesis with
your division program. Note for yourself what to expect when trying to obtain fractions from integers.
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3.6 Accuracy of Numbers

We already noted in the last exercise that we can create numbers not representable by integers like very large numbers or
decimal numbers, therefore we have to resort to real numbers declared by the real data type.
Let us consider the following program using real variables

Listing 12: accuracy.f90
1 program accuracy
2 implicit none
3

4 real :: a, b, c
5

6 a = 1.0
7 b = 6.0
8 c = a / b
9

10 write(*, *) 'a is', a
11 write(*, *) 'b is', b
12 write(*, *) 'c is', c
13

14 end program accuracy

We translate accuracy.f90 to an executable and run it to find that it is not that accurate
gfortran
fpm

gfortran accuracy.f90 -o accuracy_test
./accuracy.test
a is 1.00000000
b is 6.00000000
c is 0.166666672

fpm run
+ build/gfortran_debug/app/accuracy
a is 1.00000000
b is 6.00000000
c is 0.166666672

Similar to our integer arithmetic test, real (floating point) arithmetic has also limitation. The default representation uses
32 bits (4 bytes) to represent the floating-point number, which results in 6 significant digits, before the result starts to
differ from what we would expect, by doing the calculation on a piece of paper or in our head.
Now consider the following program

Listing 13: kinds.f90
1 program kinds
2 implicit none
3 intrinsic :: selected_real_kind
4 integer :: single, double
5 single = selected_real_kind(6)
6 double = selected_real_kind(15)
7 write(*, *) "For 6 significant digits", single, "bytes are required"

(continues on next page)

26 Chapter 3. Introduction to Fortran



Advanced Quantum Chemistry Methods, Release SoSe2024

(continued from previous page)
8 write(*, *) "For 15 significant digits", double, "bytes are required"
9 end program kinds

The intrinsic :: selected_real_kind declares that we are using a built-in function from the Fortran
compiler. This one returns the kind of real we need to represent a floating-point number with the specified significant
digits.

Exercise 4
1. create a file kinds.f90 and run it to determine the necessary kind of your floating-point variables.
2. use the syntax real(kind) :: to modify accuracy.f90 to employ what we call double-precision floating-

point numbers. Replace kind with the number you determined in kinds.f90.

Solutions 4
The output of the second write statement should be 8 on most machines.
But instead of hardcoding our wanted precision we combine kinds.f90 and accuracy.f90 in the final program
version.

Listing 14: accuracy.f90
1 program accuracy
2 implicit none
3

4 intrinsic :: selected_real_kind
5 ! kind parameter for real variables
6 integer, parameter :: wp = selected_real_kind(15)
7 real(wp) :: a, b, c
8

9 ! also use the kind parameter here
10 a = 1.0_wp
11 b = 6.0_wp
12 c = a / b
13

14 write(*, *) 'a is', a
15 write(*, *) 'b is', b
16 write(*, *) 'c is', c
17

18 end program accuracy

If we now translateaccuracy.f90we find that the output changed, we gotmore digits printed and also amore accurate,
but still not perfect result
gfortran
fpm

gfortran accuracy.f90 -o accuracy_test
./accuracy.test
a is 1.00000000000000
b is 6.00000000000000
c is 0.166666666666667
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fpm run
+ build/gfortran_debug/app/accuracy
a is 1.00000000000000
b is 6.00000000000000
c is 0.166666666666667

It is important to notice here that we cannot get the same result we would evaluate on a piece of paper since the precision
is still limited by the representation of the number.
Finally, we want to highlight line 6 in accuracy, the parameter attached to the data type (here integer) is used
to declare variables that are constant and unchangeable through the course of our program, more important, their value
is known (by the compiler) while translating the program. This gives us the possibility to assign meaningful and easy to
remember names to important values.

There is onemore issue we have to discuss, look at the following programwhich does the same calculation asaccuracy.
f90, but with different kinds of literals.

Listing 15: literals.f90
1 program literals
2 implicit none
3

4 intrinsic :: selected_real_kind
5 ! kind parameter for real variables
6 integer, parameter :: wp = selected_real_kind(15)
7 real(wp) :: a, b, c
8

9 a = 1.0_wp / 6.0_wp
10 b = 1.0 / 6.0
11 c = 1 / 6
12

13 write(*, *) 'a is', a
14 write(*, *) 'b is', b
15 write(*, *) 'c is', c
16

17 end program literals

If we run the program now we find surprisingly that only a has the expected value, while all others are off. We can easily
explain the result for c, the actual calculation is happening in integer arithmetic which yields 0 and is then cast into a real
number 0.0.

a is 0.16666666666666666
b is 0.16666667163372040
c is 0.00000000000000000

But what happens in case of b, we perform the calculation with 1.0/6.0, but those are a real number from the default
type represented in 32 bits (4 bytes) and then, as we store the result in b, casted into a real number represented in 64 bits
(8 bytes).

Important: Always specify the kind parameters in floating-point literals!

Here we introduce the concept of casting one data type to another, whenever a variable is assigned a different data type,
the compiler has to convert it first, which is called casting.

Possible Errors
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You might ask what happens if we leave out the parameter attribute in line 6, let’s try it out:

Listing 16: accuracy.f90
1 program accuracy
2 implicit none
3

4 intrinsic :: selected_real_kind
5 ! kind parameter for real variables
6 integer :: wp = selected_real_kind(15)
7 real(wp) :: a, b, c
8

9 ! also use the kind parameter here
10 a = 1.0_wp
11 b = 6.0_wp
12 c = a / b
13

14 write(*, *) 'a is', a
15 write(*, *) 'b is', b
16 write(*, *) 'c is', c
17

18 end program accuracy

gfortran complains about errors in the source code, pointing you at line 7, with several errors following, as usual, the
first error is the interesting one:

accuracy.f90:7:7:

7 | real(wp) :: a, b, c
| 1

Error: Parameter ‘wp’ at (1) has not been declared or is a variable, which does not␣
↪→reduce to a constant expression
accuracy.f90:10:12:

10 | a = 1.0_wp
| 1

Error: Missing kind-parameter at (1)
...

There we find the solution to our problem in plain text, the parameter wp, which is not a parameter in our program, is
either not declared (it is) or it is a variable. gfortran expects a parameter here, but we passed a variable. All other
errors result from either the missing parameter attribute or that gfortran could not translate line 7 due to the first
error.
Therefore, always check for the first error that occurs.
You could also ask how important line 4 with intrinsic :: is for our program. You could leave it out completely (try
it!), but we will always declare all the intrinsic functions we are using here such that you know they are, indeed, intrinsic
functions.
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3.7 Logical Constructs

Our programs so far had one line of execution. Logic is very fundamental for controlling the execution flow of a program,
usually, you evaluate logical expression directly in the corresponding if construct to decide which branch to take or save
it to a logical variable.
Now we want to solve for the roots of the quadratic equation x2 + px+ q = 0, we know that we can easily solve it by

x = −p
2
±
√
p2

4
− q

but we have to consider different cases for the number of roots we obtain from this equation (or we use complex
numbers). We have to be able to evaluate conditions and create branches dependent on the conditions for our code to
evaluate. Check out the following program to find roots

Listing 17: roots.f90
1 program roots
2 implicit none
3 ! sqrt is the square root and abs is the absolute value
4 intrinsic :: selected_real_kind, sqrt, abs
5 integer, parameter :: wp = selected_real_kind(15)
6 real(wp) :: p, q
7 real(wp) :: d
8

9 ! request user input
10 write(*, *) "Solving x² + p·x + q = 0, please enter p and q"
11 read(*, *) p, q
12 d = 0.25_wp * p**2 - q
13 ! discriminant is positive, we have two real roots
14 if (d > 0.0_wp) then
15 write(*, *) "x1 =", -0.5_wp * p + sqrt(d)
16 write(*, *) "x2 =", -0.5_wp * p - sqrt(d)
17 ! discriminant is negative, we have two complex roots
18 else if (d < 0.0_wp) then
19 write(*, *) "x1 =", -0.5_wp * p, "+ i ·", sqrt(abs(d))
20 write(*, *) "x2 =", -0.5_wp * p, "- i ·", sqrt(abs(d))
21 else ! discriminant is zero, we have only one root
22 write(*, *) "x1 = x2 =", -0.5_wp * p
23 endif
24 end program roots

Exercise 5
1. check the conditions for simple cases, start by setting up quadratic equations with known roots and compare your

results against the program.
2. Extend the program to solve the equation: ax2 + bx+ c = 0.

Fortran offers also a logical data type, the literal logical values are .true. and .false. (notice the dots enclosing
true and false values).

Note: Programmer coming from C or C++ may find it unintuitive that Fortran stores a logical in 32 bits (4 bytes)
similar to an integer and that true and false are not 1 and 0.
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You already saw two operators, greater than > and less than <, for a complete list of all operators see the following table.
They always come in two versions but have the same meaning.

Operation symbol .op. example (var is integer)
equals == .eq. var == 1, var.eq.1
not equals /= .ne. var /= 5, var.ne.5
greater than > .gt. var > 0, var.gt.0
greater equal >= .ge. var >= 10, var.ge.10
less than < .lt. var < 3, var.lt.3
less equal <= .le. var <= 8, var.le.8

Note: You cannot compare two logical expressions with each other using the operators above, but this is usually not
necessary. If you find yourself comparing two logical expressions with each other, rethink the logic in your program first,
most of the time is just some superfluous construct. If you are sure that it is really necessary, use .eqv. and .neqv.
for the task.

To negate a logical expression we prepend .not. to the expression and to test multiple expressions we can use .or.
and .and. which have the same meaning as their equivalent operators in logic.

3.8 Repeating Tasks

Consider this simple program for summing up its input

Listing 18: loop.f90
1 program loop
2 implicit none
3 integer :: i
4 integer :: number
5 ! initialize
6 number = 0
7 do
8 read(*, *) i
9 if (i <= 0) then
10 exit
11 else
12 number = number + i
13 end if
14 end do
15 write(*, *) "Sum of all input", number
16 end program loop

Here we introduce a new construct called do-loop. The content enclosed in the do/end do block will be repeated until
the exit statement is reached. Here we continue summing up as long as we are getting positive integer values (coded in
its negated form as exit if the user input is lesser than or equal to zero).

Exercise 6
1. there is no reason to limit us to positive values, modify the program such that it also takes negative values and breaks

at zero.
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Solutions 6
You might have tried to exchange the condition for i = 0, but since the equal sign is reserved for the assignment
gfortran will throw an error like this one

loop.f90:9:10:

9 | if (i = 0) then
| 1

Error: Syntax error in IF-expression at (1)
loop.f90:11:8:

11 | else
| 1

Error: Unexpected ELSE statement at (1)
loop.f90:13:7:

13 | end if
| 1

Error: Expecting END DO statement at (1)

It is a common pitfall in other programming languages to confuse the assignment operator with the equal operator, which
is fundamentally different. While it is syntactically correct in C to use an assignment in a conditional statement, the
resulting code is often in error. In Fortran, the assignment does not return a value (unlike in C), therefore the code is
logically and syntactically wrong. We are better off using the correct == or .eq. operator here.

Now that we know the basic loop construction from Fortran, we will introduce two special versions, which you will
encounter more frequently in the future. First, the loop we set up in the example before, did not terminate without us
specifying a condition. We can add the condition directly to the loop using the do while(<condition>) construct
instead.

Listing 19: while.f90
1 program while_loop
2 implicit none
3 integer :: i
4 integer :: number
5 ! initialize
6 number = 0
7 read(*, *) i
8 do while(i > 0)
9 number = number + i
10 read(*, *) i
11 end do
12 write(*, *) "Sum of all input", number
13 end program while_loop

This shifts the condition to the beginning of the loop, so we have to restructure our execution sequence a bit to match the
new logical flow of the program. Here, we save the if and exit, but have to provide the read statement twice.
Imagine we do not want to sum arbitrary numbers but make a cumulative sum over a range of numbers. In this case, we
would use another version of the do loop as given here:
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Listing 20: sum.f90
1 program cumulative_sum
2 implicit none
3 integer :: i, n
4 integer :: number
5 ! initialize
6 number = 0
7 read(*, *) n
8 do i = 1, n
9 number = number + i
10 end do
11 write(*, *) "Sum is", number
12 end program cumulative_sum

You might notice we had to introduce another variable n for the upper bound of the range, because we made i now our
loop counter, which is automatically incremented for each repetition of the loop, also you don’t have to care about the
termination condition, as it is generated automatically by the specified range.

Important: Never write to the loop counter variable inside its loop.

Exercise 7
1. Check the results by comparing them to your previous programs for summing integer.
2. What happens if you provide a negative upper bound?
3. The lower bound is fixed to one, make it adjustable by user input. Compare the results again with your previous

programs.

Now, if we want to sum only even numbers in our cumulative sum, we could try to add a condition in our loop:

Listing 21: sum.f90
1 program cumulative_sum
2 implicit none
3 intrinsic :: modulo
4 integer :: i, n
5 integer :: number
6 ! initialize
7 number = 0
8 read(*, *) n
9 do i = 1, n
10 if (modulo(i, 2) == 1) cycle
11 number = number + i
12 end do
13 write(*, *) "Sum is", number
14 end program cumulative_sum

The cycle instruction breaks out of the current iteration, but not out of the complete loop like exit. Here we use it
together with the intrinsic modulo function to determine the remainder of our loop counter variable in every step and
cycle in case we find a remainder of one, meaning an odd number.

Note: Programmers coming from almost any language might find it confusing to start counting at 1. It was adopted as
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default choice because of it is the natural choice (for non-programmers at least), but Fortran does not limit you there,
there are scenarios where counting from -l to +l is the better choice, i.e. for orbital angular momenta.
You can also start counting from 0, but please keep in mind that most people also find it unintuitive to start counting from
0.

3.9 Fields and Arrays of Data

So far we dealt with scalar data, for more complex programs we will need fields of data, like a set of cartesian coordinates
or the overlap matrix. Fortran provides first-class multidimensional array support.

Listing 22: array.f90
1 program array
2 implicit none
3 intrinsic :: sum, product, maxval, minval
4 integer :: vec(3)
5 ! get all elements from standard input
6 read(*, *) vec
7 ! produce some results
8 write(*, *) "Sum of all elements", sum(vec)
9 write(*, *) "Product of all elemnts", product(vec)
10 write(*, *) "Maximal/minimal value", maxval(vec), minval(vec)
11 end program array

We denote arrays by adding the dimension in parenthesis behind the variable, in this we choose a range from 1 to 3,
resulting in 3 elements.

Exercise 8
1. Expand the above program to work on a 3 by 3 matrix
2. The sum and product can also work on only one of the two dimensions, try to use them only for the rows or

columns of the matrix

Usually, we do not know the size of the array in advance, to deal with this issue we have to make the array allocatable
and explicitly request the memory at runtime

Listing 23: array.f90
1 program array
2 implicit none
3 intrinsic :: sum, product, maxval, minval
4 integer :: ndim
5 integer, allocatable :: vec(:)
6 ! read the dimension of the vector first
7 read(*, *) ndim
8 ! request the necessary memory
9 allocate(vec(ndim))
10 ! now read the ndim elements of the vector
11 read(*, *) vec
12 write(*, *) "Sum of all elements", sum(vec)
13 write(*, *) "Product of all elemnts", product(vec)

(continues on next page)
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(continued from previous page)
14 write(*, *) "Maximal/minimal value", maxval(vec), minval(vec)
15 end program array

Exercise 9
1. What happens if you provide zero as dimension? Does the behavior match your expectations?
2. Try to allocate your array with a lower bound unequal to 1 by using something like allo-

cate(vec(lower:upper))

Up to now we only performed operations on an entire (multidimensional) array, to access a specific element we use its
index

Listing 24: array.f90
1 program array_sum
2 implicit none
3 intrinsic :: size
4 integer :: ndim, i, vec_sum
5 integer, allocatable :: vec(:)
6 ! read the dimension of the vector first
7 read(*, *) ndim
8 ! request the necessary memory
9 allocate(vec(ndim))
10 ! now read the ndim elements of the vector
11 read(*, *) vec
12 vec_sum = 0
13 do i = 1, size(vec)
14 vec_sum = vec_sum + vec(i)
15 end do
16 write(*, *) "Sum of all elements", vec_sum
17 end program array_sum

The above program provides a similar functionality to the intrinsic sum function.

Exercise 10
1. Reproduce the functionality of product, maxval and minval, compare to the intrinsic functions.
2. What happens when you read or write outside the bounds of the array?

Solutions 10
Let’s try to read one element past the size of the array and add this elements to the sum (do i = 1, size(vec)+1):

./array_sum
10
1 1 1 1 1 1 1 1 1 1
Sum of all elements 331

Tip: Using fpm would have caught this error by default. You would see the run time error message shown below already
at this stage.
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Since we provided ten elements which are all one, we expect 10 as result, but get a different number. So what is element
11 of our array of size 10? We have gone out-of-bounds for the array, whatever is beyond the bounds of our array, we
are not supposed to know or care.
Checking out-of-bounds errors is not enabled by default, we enable it by recompiling our program and now found a helpful
message

gfortran array_sum.f90 -fcheck=bounds -o array_sum
./array_sum
10
1 1 1 1 1 1 1 1 1 1
At line 14 of file array_sum.f90
Fortran runtime error: Index '11' of dimension 1 of array 'vec' above upper bound of␣
↪→10

Error termination. Backtrace:
#0 0x55fc72c90530 in ???
#1 0x55fc72c9062f in ???
#2 0x7ff5c6e57152 in ???
#3 0x55fc72c9014d in ???
#4 0xffffffffffffffff in ???

By using the intrinsic functions like size it is garanteered that you will stay inside the array bounds.

3.10 Functions and Subroutines

In the last exercise you wrote implementations for sum, product, maxval and minval, but since they are inlined in
the program we cannot really reuse them. For this purpose we introduce functions and subroutines:

Listing 25: sum_func.f90
1 program array_sum
2 implicit none
3 interface
4 function sum_func(vector) result(vector_sum)
5 integer, intent(in) :: vector(:)
6 integer :: vector_sum
7 end function sum_func
8 end interface
9 integer :: ndim
10 integer, allocatable :: vec(:)
11 ! read the dimension of the vector first
12 read(*, *) ndim
13 ! request the necessary memory
14 allocate(vec(ndim))
15 ! now read the ndim elements of the vector
16 read(*, *) vec
17 write(*, *) "Sum of all elements", sum_func(vec)
18 end program array_sum
19

20 function sum_func(vector) result(vector_sum)
21 implicit none
22 intrinsic :: size
23 integer, intent(in) :: vector(:)
24 integer :: vector_sum, i

(continues on next page)
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(continued from previous page)
25 vector_sum = 0
26 do i = 1, size(vector)
27 vector_sum = vector_sum + vector(i)
28 end do
29 end function sum_func

In the above program we have separated the implementation of the summation to an external function called sum_func
we provided an interface to allow our main program to access the new function. We have to introduce a dummy
argument (called vector) and have to specify its intent, here it is in because we do not modify it (other intents are
out and inout). When invoking the function we pass vec as vector to our summation function which returns the
sum for us.
Note that we now have two declaration sections in our file, one for our program and one for the implementation of our
summation function. You might also notice that writing interfaces can rapidly become cumbersome, so there is a better
mechanism we want to use here:

Listing 26: sum_func.f90
1 module array_funcs
2 implicit none
3 contains
4 function sum_func(vector) result(vector_sum)
5 intrinsic :: size
6 integer, intent(in) :: vector(:)
7 integer :: vector_sum, i
8 vector_sum = 0
9 do i = 1, size(vector)
10 vector_sum = vector_sum + vector(i)
11 end do
12 end function sum_func
13 end module array_funcs
14

15 program array_sum
16 use array_funcs
17 implicit none
18 integer :: ndim
19 integer, allocatable :: vec(:)
20 ! read the dimension of the vector first
21 read(*, *) ndim
22 ! request the necessary memory
23 allocate(vec(ndim))
24 ! now read the ndim elements of the vector
25 read(*, *) vec
26 write(*, *) "Sum of all elements", sum_func(vec)
27 end program array_sum

We wrap implementation of the summation now into a module which ensures the correct interface is generated
automatically and made available by adding the use statement to the main program.

Exercise 11
1. Implement your product, maxval and minval function in the array_funcsmodule. Compare your results

with your previous programs.
2. Write functions to perform the scalar product between two vectors and reuse it to write a function for matrix-vector

multiplications. Compare to the intrinsic functions dot_product and matmul.
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When writing functions like the above ones, we follow a specific scheme, all arguments are not modified (intent(in))
and we return a single variable. There are cases were we do not want to return a single value (in such a case we would
return nothing) or do more complex operations in it. Functions of this kind are called subroutines:

Listing 27: sum_sub.f90
1 module array_funcs
2 implicit none
3 contains
4 subroutine sum_sub(vector, vector_sum)
5 intrinsic :: size
6 integer, intent(in) :: vector(:)
7 integer, intent(out) :: vector_sum
8 integer :: i
9 vector_sum = 0
10 do i = 1, size(vector)
11 vector_sum = vector_sum + vector(i)
12 end do
13 end subroutine sum_sub
14 end module array_funcs
15

16 program array_sum
17 use array_funcs
18 implicit none
19 integer :: ndim
20 integer, allocatable :: vec(:)
21 integer :: vec_sum
22 ! read the dimension of the vector first
23 read(*, *) ndim
24 ! request the necessary memory
25 allocate(vec(ndim))
26 ! now read the ndim elements of the vector
27 read(*, *) vec
28 call sum_sub(vec, vec_sum)
29 write(*, *) "Sum of all elements", vec_sum
30 end program array_sum

On the first glance, subroutines have several disadvantages compared to functions, we need to explicitly declare a tem-
porary variable, also we cannot use them inline with another instruction. This holds true for short and simple operations,
here functions should be prefered over subroutines. On the other hand, if the code in the function gets more complicated
and the number of dummy arguments grows, we should prefer subroutines, because they are more visible in the code,
especially due to the explicit call keyword.

3.11 Multidimensional Arrays

We will be dealing in the following chapter with multidimensional arrays, usually in form of rank two arrays (matrices).
Matrices are stored continuously in memory following a column major ordering, this means the innermost index of any
higher rank array will represent continuous memory.
Reading a rank two array should be done by

Listing 28: array_rank.f90
1 program array_rank
2 implicit none

(continues on next page)
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(continued from previous page)
3

4 intrinsic :: selected_real_kind
5 ! kind parameter for real variables
6 integer, parameter :: wp = selected_real_kind(15)
7 integer :: i
8 integer :: d1, d2
9 real(wp), allocatable :: arr2(:, :)
10

11 read(*, *) d1, d2
12

13 allocate(arr2(d1, d2))
14

15 do i = 1, size(arr2, 2)
16 read(*, *) arr2(:, i)
17 end do
18

19 end program array_rank

This ensures that the complete array is filled in unit strides, i.e. visiting all elements of the array in exactly the order they
are stored in memory. Making sure the memory access is in unit strides usually allows compilers to produce more efficient
programs.

Tip: Array slices should preferably be used on continuous memory, practically this means a colon should only be present
in the innermost dimensions of an array.

array2 = array3(:, :, i)

Storing data, like cartesian coordinates, should follow the same considerations. It is always preferable to have the three
cartesian components of the position close to each other in memory.

3.12 Character Constants and Variables

The character data type consists of strings of alphanumeric characters. You have already used character constants,
which are strings of characters enclosed in single (') or double (") quotes, like in your very first Fortran program. The
minimum number of characters in a string is 0.

1 write(*, *) "This is a valid character constant!"
2 write(*, *) '3.1415936' ! not a number
3 write(*, *) "{']!=" ! any character can be included, even !

A character variable is a variable containing a value of the character data type:

1 character :: single
2 character, dimension(20) :: many
3 character(len=20) :: fname
4 character(len=:), allocatable :: input

• the first variable single can contain only a single character
• like before one could try to create an array-like many containing many characters, but it turns out that this is not
a viable approach to deal with characters
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• Fortran offers a better way to make use of the character data type by adding a length to the variable, as is done for
fname.

• a more flexible way of declaring your character variables is to use a so called deferred size character, like input.
To write certain data neatly to the screen format specifiers can be used, which are character constants or variables. Consider
your addition program from the beginning of this course:

1 program add
2 implicit none
3 ! declare variables: integers
4 integer :: a, b
5 integer :: res
6

7 ! assign values
8 a = 2
9 b = 4
10

11 ! perform calculation
12 res = a + b
13

14 write(*,'(a,1x,i0)') 'Program has finished, result is', res
15 end program add

Instead of using the asterisk, we now define the format for the printout. The format must always be enclosed in parenthesis
and the individual format specifier must be separated by commas. Therefore the first format specifier is a, which tells
Fortran to print a character. The second specifier is one space (1x), while the last (i0) specifies an integer datatype with
automatic width.
The result will look similar to your first run, but now there will only be one space between the characters and the final
result. Of course, you can do more: / is a line break, f12.8 is a 12 characters wide floating-point number printout with
8 decimal places and es12.4 switches to scientific notation with only 4 decimal places.

3.13 Interacting with Files

Up to now you only interacted with your Fortran program by standard input and standard output. For a more complex
program a complicated input file might be necessary or the output should be saved for later analysis in a file on disk. To
perform this task you need to open and close your files.

1 program files
2 implicit none
3 integer :: io
4 integer :: ndim
5 real :: var1, var2
6 open(file='name.inp', newunit=io)
7 read(io,*) ndim, var1, var2
8 close(io)
9 ! do some computation
10 open(file='name.out', newunit=io)
11 write(io,'(i0)') ndim
12 write(io,'(2f14.8)') var1, var2
13 close(io)
14 end program files

You see that you can interact with your files like with the standard input or output, but instead of the asterisk, you need
to give each file a number. Fortunately, you do not have to keep track of the numbers used, as Fortran will do this
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automatically for you. Of course, you can check the value of io after opening a file and will find that it is just a (negative)
number used to identify the file opened.

3.14 Application

Finally we have some more elaborate exercises to test what you already learned, it is not mandatory to solve the exercises
here, but it will not harm as well.

Exercise 12
Calculate an approximation to π using Leibniz’ formula:

π

4
=

∞∑
k=0

(−1)k

2k + 1

⇒ π ≈ 4

N∑
k=0

(−1)k

2k + 1

The number of summands N shall be read from command line input. Do a sensible convergence check every few sum-
mands, i.e. if the summand becomes smaller than a threshold, exit the loop.
Note that the values in the Leibniz formula alternate in sign, rewrite your program to always add two of the summands
(one with positive and one with negative sign) at once. Compare the results, why do they differ?
To adjust the step-length in the loop use

do i = 1, nmax, 2
...

end do

Exercise 13
Approximately calculate the area in a unit circle to obtain π using trapezoids. The simplest way to do this is to choose a
quarter circle and multiply its area by four.

Recall that the area of a trapezoid is the average of its sides times its height. The number of trapezoids shall be read from
command line input.

Exercise 14
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Approximately calculate π using the statistical method.

Generate pairs of random numbers (x,y) in the interval [0,1]. If they correspond to a point within the quarter circle, count
them as “in”. For large numbers of pairs, the ratio of “in” to the total number of pairs should correspond to the ratio of
the area of the quarter circle to the area of the square (as described by the mentioned interval).
To generate (pseudo-)random numbers in Fortran use

real(kind) :: x(dim)
call random_number(x)

3.15 Derived Types

When writing your SCF program, you will notice that there are variables that can be grouped or belong to a certain
category. To enhance the readability and structure of your code it can be convenient to gather these variables in a so
called derived type. A derived type is another data type (like integer or character for example) that can contain built-in
types as well as other derived types.
Here is an example of an arbitrary derived type:

type :: arbitrary
integer :: num
real :: pi
character :: string
logical :: boolean

end type arbitrary

The derived type contains the four variables num, pi, string and boolean. The syntax to create a variable of type
arbitrary and access its members is:

! create variable "arb" of type "arbitrary"
type(arbitrary) :: arb
! access the members of the derived type with %
arb%num = 1
arb%pi = 3.0
arb%string = 'ok'
arb%boolean = .true.

Another advantage of using derived types is that you only need to pass one variable to a procedure instead of all the
variables included in the derived type.

42 Chapter 3. Introduction to Fortran



Advanced Quantum Chemistry Methods, Release SoSe2024

Exercise 15
The program below includes a derived type called geometry. So far, it contains the number of atoms and the atom
positions. In the rest of the code, two atoms and their positions are set. Then the geometry information is printed by
calling the subroutine geometry_info.

1. In order to clearly specify a chemical structure, it is necessary to assign an ordinal number to each atom. Add a
one-dimensional allocatable integer variable to the derived type that will contain the ordinal number for each atom.
Allocate memory for your new variable and set the initial value to zero using the source expression.

2. Now add a third atom to the geometry and assign atom types and positions to create a sensible carbon dioxide
molecule.

3. Add the ordinal number to the printout in the geometry_info subroutine.

Listing 29: derived_types.f90
1 program derived_types
2 implicit none
3 intrinsic :: selected_real_kind
4 integer, parameter :: wp = selected_real_kind(15)
5

6 ! derived type cleary specifying a chemical structure
7 type :: geometry
8 !> number of atoms
9 integer :: n
10 !> xyz coordinates of the atoms in angstrom
11 real(wp), allocatable :: xyz(:,:)
12 end type
13

14 type(geometry) :: geo
15

16

17 ! define number of atoms
18 geo%n = 2
19

20 ! allocate memory for atoms and set initial values to zero
21 allocate(geo%xyz(3, geo%n), source=0.0_wp)
22

23 ! define atom types and positions
24 ! first atom is oxygen
25 geo%xyz(1,1) = -1.16_wp
26 ! second atom is carbon
27

28 ! third atom is oxygen
29

30

31 call geometry_info(geo)
32

33

34 contains
35

36 subroutine geometry_info(geo)
37 type(geometry) :: geo
38 integer :: i
39 write(*,'(a, i0, a)') 'The input geometry has ', geo%n, ' atoms.'
40 write(*,'(a)') 'Writing atom positions:'

(continues on next page)
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(continued from previous page)
41 do i=1, geo%n
42 write(*,'(3f10.4)') geo%xyz(:,i)
43 enddo
44 end subroutine geometry_info
45

46

47 end program derived_types

Solutions 15

Listing 30: derived_types.f90
1 program derived_types
2 implicit none
3 intrinsic :: selected_real_kind
4 integer, parameter :: wp = selected_real_kind(15)
5

6 ! derived type cleary specifying a chemical structure
7 type :: geometry
8 !> number of atoms
9 integer :: n
10 !> xyz coordinates of the atoms in angstrom
11 real(wp), allocatable :: xyz(:,:)
12 !> atom type
13 integer, allocatable :: at(:)
14 end type
15

16 type(geometry) :: geo
17

18

19 ! define number of atoms
20 geo%n = 3
21

22 ! allocate memory for atoms and set initial values to zero
23 allocate(geo%xyz(3, geo%n), source=0.0_wp)
24 allocate(geo%at(geo%n), source=0)
25

26 ! define atom types and positions
27 ! first atom is oxygen
28 geo%at(1) = 8
29 geo%xyz(1,1) = -1.16_wp
30 ! second atom is carbon
31 geo%at(2) = 6
32 ! third atom is oxygen
33 geo%at(3) = 8
34 ! carbondioxide should be linear and symetric
35 ! therefore the x-coordinate of the new oxygen should be 1.16 angstrom
36 geo%xyz(1,3) = 1.16_wp
37

38 call geometry_info(geo)
39

40

41 contains
42

43 subroutine geometry_info(geo)
44 type(geometry) :: geo

(continues on next page)
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(continued from previous page)
45 integer :: i
46 write(*,'(a, i0, a)') 'The input geometry has ', geo%n, ' atoms.'
47 write(*,'(a)') 'Writing atom positions followed by atom type:'
48 do i=1, geo%n
49 write(*,'(3f10.4,4x,i0)') geo%xyz(:,i), geo%at(i)
50 enddo
51 end subroutine geometry_info
52

53

54 end program derived_types
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SCF PROGRAM

The main objective of this course is to write a working restricted Hartree–Fock program.

Contents

• SCF program
– Restricted Hartree–Fock

∗ Getting Input
∗ Classical Contributions
∗ Basis Set Setup
∗ One-Electron Integrals
∗ Symmetric Orthonormalizer
∗ Initial Guess
∗ Hartree-Fock Energy
∗ Two-Electron Integrals
∗ Self Consistent Field Procedure
∗ Dissociation Curves

– Properties

∗ Partial Charges
∗ Charge Density

– Geometry Optimization

∗ Numerical Derivatives
∗ Steepest Descent

– Unrestricted Hartree-Fock

∗ Spin Contamination
– Møller–Plesset Perturbation Theory

Note: Start by extracting the course-material.zip which you downloaded earlier. You should find a scf/
directory containing the starting code for your program (see scf/app/main.f90).
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You can just continue to use fpm to work on your program now.
Alternatively, to make building your program easier with just the Fortran compiler and give you more time to focus on
the actual programming we put some build automation there as well. To use it just invoke make and find everything else
taken care for.
For more details on building software and how we automated this process you can find a guide at the fortran-lang learning
page.

4.1 Restricted Hartree–Fock

The first task in this course is to code a working restricted Hartree–Fock program.

4.1.1 Getting Input

First, we have to gather which information is important to perform aHartree–Fock calculation. We need to know about the
molecular geometry. There are several ways to represent the geometry, the most simple is to use Cartesian coordinates as
a vector of x, y and z coordinates. What maybe is not that obvious, we have to decide on a unit system for the coordinates,
usually we would follow IUPAC recommendations and use SI units like meters, but if you think about a molecule on the
length scale in meters it becomes quite inconvenient. To get into the right ballpark we could choose Ångström which has
an obvious relation to the SI unit, but here we will use Bohr which is the length unit of the atomic units system. Atomic
units have the advantage that a lot of constants drop out of the equations we want to code up, and we can convert them
easily back, in fact, we provide a conversion routine back to SI units for you.
These are the considerations we have to put in the geometry, now we have to identify the atoms/nuclei in our molecule.
Chemical identity like the element is given by the nuclear charge and the number of electrons. It is quite popular to specify
both with the element symbol which map to the atomic number (which corresponds to the nuclear charge and the number
of electrons of the neutral atom) since it is the intuitive choice. We will not follow this approach since it would require
you to work with character type variables, instead we will separate the nuclear charge information and the number of
electrons. For each element, we will read the nuclear charge in multiples of the electron charge (which is the atomic unit
of charge) and specify the number of electrons separately.
Having put some thoughts in the geometric representation of the system, we now have to tackle the electronic represen-
tation, that is, we need a basis set to expand our wavefunction. There are many possible choices, like atom centered basis
functions (Slater-type, Gaussian-type, …) plain waves, wavelets, … This is one of the most important choices for every
quantum chemistry code. Usually, a single kind of functions is supported which is limiting the chemical systems that can
be calculated with the program in question. The most common distinction is made between codes that support periodic
boundary conditions or not, while periodic boundary conditions are naturally included in plain wave and wavelet based
programs, extra effort has to be put into codes using Gaussian-type basis functions to support this kind of calculation.
Also, most wavefunction centered programs use atom centered orbitals since the resulting integrals are easier to solve.
Here, the exception to the rule is quite common in our field of research and usually offers a unique competitive edge.
For writing your Hartree-Fock program, you do not have to bother with this choice, because we already made it for you
by providing the implementation for integrals over Gaussian-type basis functions. We will limit you here to spherical
basis functions only, so you can concentrate on coding the self-consistent field procedure and do not have to worry about
mapping shells to orbitals to basis functions to primitives. However, you require a mapping from basis functions to atoms,
i.e., which basis function belongs to which atom.
We will start with the input for the dihydrogen molecule in a minimal basis set. With the input format we provide, the
geometrical structure of the system and the basis set are tied together.
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Listing 1: h2.in
1 2 2 2
2 0.0 0.0 -0.7 1.0 1
3 1.20
4 0.0 0.0 0.7 1.0 1
5 1.20

This input contains the information necessary to code up your program, we start with the first line, which contains the
number of atoms, the number electrons and the total number of basis functions as integer values. None of this information
is necessary to read the input file, but is included for convenience, e.g., such that you can allocate memory before starting
to read the rest of the file.
Starting from the second line we expect a tuple of the three Cartesian coordinates in Bohr, the nuclear charges in multiples
of electron charge and the number of basis functions this particular atom. In the lines after position and identity, we find
the exponents of our basis functions, the number of lines following corresponds to the number of basis functions for this
particular atom.
make
fpm

Important: You can compile your program using

make
...
gfortran ... -o ./scf

The resulting binary will be placed in the current working directory. Run it with

./scf
Here could start a Hartree-Fock calculation

The starting code provides the possibility to pass the input file as command line argument to your program with

./scf molecules/h2.in
Here could start a Hartree-Fock calculation

The input file will always be opened to the input unit in app/main.f90.

Important: The starting code is already setup as fpm project. The package manifest should contain the following content

Listing 2: fpm.toml
name = "scf"

[[executable]]
name = "scf"
main = "prog.f90"

You can run your program with

fpm run
...

(continues on next page)
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(continued from previous page)
+ build/gfortran_debug/app/scf

Here could start a Hartree-Fock calculation

The starting code provides the possibility to pass the input file as command line argument to your program with

fpm run -- molecules/h2.in
...
+ build/gfortran_debug/app/scf "molecules/h2.in"

Here could start a Hartree-Fock calculation

The input file will always be opened to the input unit in app/main.f90.

Exercise 1
Before you start coding the input reader for this format, try to write with the specifications inputs for the following systems:

1. A helium atom in a double zeta basis set with exponents 2.5 and 1.0.
2. A helium-hydrogen cation with a bond distance of 2 Bohr in a minimal basis set on both atoms and an exponent of

1.25 for each atom.

Solutions 1
For a single atom, the choice of the position is unimportant, so we can write something like

Listing 3: he.in
1 1 2 2
2 0.0 0.0 0.0 2.0 2
3 2.5
4 1.0

The helium-hydrogen cation looks similar to the dihydrogen, except for the changed nuclear charge.

Listing 4: heh+.in
1 2 2 2
2 0.0 0.0 -1.0 2.0 1
3 1.25
4 0.0 0.0 1.0 1.0 1
5 1.25

Exercise 2
1. Code an input reader that can read all the provided input files.
2. Make sure the input file is read correctly by printing all data read to the terminal.
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4.1.2 Classical Contributions

First, we start by computing the classical nuclear repulsion energy, i.e., the Coulomb energy between the nuclei.

Exercise 3
1. Which data is needed in the computation?
2. Code up the nuclear repulsion energy in a separate subroutine. Write the resulting energy in a meaningful way

to the terminal.
3. Evaluate the Coulomb-law for the dihydrogen molecule at 1.4 Bohr distance and compare it with your program.

Can you run your subroutine multiple times and get the same result? If not recheck your code.
4. Check what happens if you calculate the nuclear repulsion energy for a single atom. Do you get the expected result?
5. Is there a (intrinsic) Fortran function that simplifies the calculation?

Classical contributions to the total energy do not dependent on the density or wavefunction and can already be calculated
before starting with the self-consistent field procedure. It is usually a good idea to evaluate these contributions first,
because they are less expensive to compute and, for the purpose of this course, easier to implement.

4.1.3 Basis Set Setup

This Hartree-Fock program will use contracted Gaussian-type orbitals to expand the molecular orbitals in atomic orbitals.
We will use an STO-6G basis set, i.e., we use the best representation of a Slater-type orbital by six primitive Gaussian-type
orbitals.
This is the first time you will use an external library function, therefore we will clarify to you how to read and use an
interface. In your program, you will call a provided subroutine to perform the expansion from the Slater orbital
to six primitive Gaussian-type orbitals.
The final call in your program might look somewhat similar to this:

call expand_slater(ng, zeta, exponents, coefficients)

To understand why the subroutine expand_slater takes four arguments, we look up its interface:

interface
subroutine expand_slater(ng, zeta, exponents, coefficients)
import wp
integer, intent(in) :: ng !< number of primitive Gaussian functions
real(wp), intent(in) :: zeta !< exponent of slater function
real(wp), intent(out) :: exponents(:) !< of primitive Gaussian functions
real(wp), intent(out) :: coefficients(:) !< of primitive Gaussian functions
end subroutine expand_slater
end interface

An interface provides the necessary information on how to invoke a subroutine or function without con-
cerning you with the implementation details.

Note: For programmers coming from C or C++, it is similar to an extern declaration in a header file for a function.

Usually, you do not have to write an interface since they are conveniently created and handled for you by your
compiler.
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Exercise 4
1. Create aparameter storing the information about the number of primitiveGaussian functions youwant to expand

your Slater function in.
2. What is the optimal layout for saving the exponents and coefficients of the primitive Gaussian functions? Which

quantities from the input do you need to determine the amount of memory to store them?
3. Allocate enough space to store all the primitive exponents and coefficients from the expansion for calculating the

integrals later.
4. Loop over all basis functions, perform the expansion for each and save the resulting primitive Gaussians to the

respective arrays.

4.1.4 One-Electron Integrals

Note that the chosen basis set is very simple, we only allow spherical basis function (s-functions), also the contraction
depth of each function is the same. Usually, one would choose more sophisticated basis sets for quantitative calculations,
but the basic principle remains the same.
Integral calculations can quickly be very obscure depending on the way a basis set is stored and mainly handle
implementation-specific details of the program to perform the integral evaluation in some clever way. We use a sim-
ple basis set here to teach you the basic principle of integral evaluation.
We start with the simple one-electron integrals. For Hartree-Fock, we need two-center overlap integrals, two-center ki-
netic energy integrals and three-center nuclear attraction integrals. To make things easier, we provide the implementation
for all three integrals over contracted Gaussian orbitals, let’s check out the interface:

interface
!> one electron integrals over spherical Gaussian functions
subroutine oneint(xyz, chrg, r_a, r_b, alp, bet, ca, cb, sab, tab, vab)

real(wp), intent(in) :: xyz(:, :) !< position of all atoms in atomic units, dim:␣
↪→[3, nat]

real(wp), intent(in) :: chrg(:) !< nuclear charges, dim: nat
real(wp), intent(in) :: r_a(:) !< aufpunkt of orbital a, dim: 3
real(wp), intent(in) :: r_b(:) !< aufpunkt of orbital b, dim: 3
real(wp), intent(in) :: alp(:) !< Gaussian exponents of the primitives at a
real(wp), intent(in) :: bet(:) !< Gaussian exponents of the primitives at b
real(wp), intent(in) :: ca(:) !< contraction coeffients of primitives at a
real(wp), intent(in) :: cb(:) !< contraction coeffients of primitives at b
real(wp), intent(out) :: sab !< overlap integral <a|b>
real(wp), intent(out) :: tab !< kinetic energy integral <a|T|b>
real(wp), intent(out) :: vab !< nuclear attraction integrals <a|Σ z/r|b>

end subroutine oneint
end interface

The most important information is that we need two centers for the calculation, meaning we have to implement it as a
loop over all orbital pairs (= pairs of basis functions). Additionally, we have to account for the different resolutions of the
inputs of the subroutine oneint: While the aufpunkte are atom-resolved, the exponents, contraction coefficients and
integrals are orbital-resolved (relate to the basis functions).

Exercise 5
1. Which matrices can you compute from the one-electron integrals?
2. Allocate space for the necessary matrices.
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3. How can you map between atom- and orbital-resolved variables?
4. Loop over all pairs and calculate all the matrix elements.

Exercise 6
Symmetric matrices, like the overlap, can be stored in two ways, as full N×N matrix with dimension(n,n) or as
packed matrix in a one-dimensional array with dimension(n*(1+n)/2), like:

1 2 4 7 · · ·
3 5 8

6 9
10

... . . .

⇔


1
2
3
4
...




a11 a12 a13 a14 · · ·

a22 a23 a24
a33 a34

a44
... . . .

⇔


a11
a12
a22
a13
...


1. Check if the matrices you have calculated are symmetric.
2. Pack all symmetric matrices.

The eigenvalue solver provided can only work with symmetric packed matrices, therefore you should have an unpacked
to packed conversion routine ready for the next exercise.

4.1.5 Symmetric Orthonormalizer

The eigenvalue problem we have to solve is a general one given by

FC = SCε

where F is the Fock matrix, C is the matrix of the eigenvectors, S is the overlap matrix and ε is a diagonal matrix of
the eigenvalues. While this is in principle possible with a more elaborated solver routine, we want to solve the following
problem instead:

F′C′ = C′ε

For this reason, we have to find a transformation from F to F’ and back from C’ to C. We choose the Loewdin orthonor-
malization or symmetric orthonormalization by calculating X = S-1/2, to invert (or perform any operation with) a matrix
we have to diagonalize it first and perform the operation on the eigenvalues s.

X = S−1/2 = Us−1/2U⊤ where s = U⊤SU

Exercise 7
1. Use F’ = XT FX and C = XC’ to show that the general eigenvalue problem and the transformed one are equivalent.
2. Write a subroutine to calculate the symmetric orthonormalizer X from the overlap matrix.
3. Make sure that XT SX = 1 and that you are not overwriting your overlap matrix in the diagonalization.
4. Do you see why X is called symmetric orthonormalizer?

To solve the actual eigenvalue problem we will use the linear algebra package (LAPACK), namely the subroutine dspev,
which stands for double precision, symmetric packed eigenvalue problem, for more details you can look up the documen-
tation. Since LAPACK routines can be somewhat unintuitive to work with on the first encounter we provide a wrapper
called solve_spev. As usual we checkout the interface in src/linear_algebra.f90:
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interface
subroutine solve_spev(matrix, eigval, eigvec, stat)

import wp
!> symmetric packed matrix to diagonalize, dim: n*(n+1)/2
! matrix is overwritten by the LAPACK solver
real(wp), intent(inout) :: matrix(:)
!> contains eigenvalues on exit, dim: n
real(wp), intent(out) :: eigval(:)
!> contains eigenvectors on exit, dim: [n, n]
real(wp), intent(out) :: eigvec(:, :)
!> error status, if not provided the routine will stop the program
integer, intent(out), optional :: stat

end subroutine solve_spev
end interface

Note: The linear algebra package (LAPACK) and the basic linear algebra subprograms (BLAS) are commonly used
libraries in many quantum chemical programs, as they provide a computationally efficient and uniform interface to many
linear algebra problems.

4.1.6 Initial Guess

There are now two possible ways to initialize your density matrix P.
1. Provide a guess for the orbitals
2. Provide a guess for the Hamiltonian

If you happen to have converged orbitals around, the first method would be the most suitable. Alternatively, you can
provide a model Hamiltonian, usually a tight-binding or extended Hückel Hamiltonian is used here. The simplest possible
model Hamiltonian we have readily available is the core Hamiltonian H0 = T + V.
The initial density matrix P is obtained from the orbital coefficients by

P = C noccC⊤

where nocc is a diagonal matrix with the occupation numbers of the orbitals. For the restricted Hartree-Fock case n*i*,occ
is two for occupied orbitals and zero for virtual orbitals.

Exercise 8
1. By using F = H0 as an initial guess for the Fock matrix we effectively set the density matrix P to zero. What does

this mean from a physical point of view?
2. Add the initial guess to your program.
3. Diagonalize the initial Fock matrix (use the symmetric orthonormalizer) to obtain a set of guess orbital coefficients

C.
4. Calculate the initial density matrix P resulting from those orbital coefficients.

54 Chapter 4. SCF program



Advanced Quantum Chemistry Methods, Release SoSe2024

4.1.7 Hartree-Fock Energy

The Hartree-Fock energy is given by

EHF =
1

2
Tr{(H0 + F)P}

where Tr denotes the trace.

Exercise 9
You should have now an initial Fock matrix F and an initial density matrix P.

1. Write a subroutine to calculate the Hartree-Fock energy.
2. Calculate the initial Hartree-Fock energy.

4.1.8 Two-Electron Integrals

We have ignored the two-electron integrals for a while now, up to now they were not important, but we will now need to
calculate them to perform a self-consistent field procedure. The four-center two-electron integrals are the most expensive
quantity in every Hartree-Fock calculation and there exist many clever algorithms to avoid calculating them all together,
we will again go the straight-forward way and calculate them the naive way.
Again we will check the interface of the twoint routine in src/integrals.f90.

Exercise 10
1. Allocate enough space to store the two-electron integrals.
2. Create a (nested) loop to calculate all two-electron integrals.

Exercise 11
The four-center integrals have an eight-fold symmetry relation we want to use when calculating such an expensive integral
to speed up the calculation. Rewrite your loops to only calculate the unique integrals:

(µν|κλ) = (νµ|κλ) = (µν|λκ) = (νµ|λκ) = (κλ|µν) = (κλ|νµ) = (λκ|µν) = (λκ|νµ)

1. Write down all the indices for the four-center integrals and figure out unique relation between the indices (it is
similar to packing matrices).

2. Implement this eight-fold-symmetry in your calculation.
3. You can also pack the two-electron integrals like you packed your matrices (you need to pack them three times, the

bra and the ket separately, and then the packed bra and ket again). Note that this will make it later more difficult
to access the values again, therefore it is optional.
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4.1.9 Self Consistent Field Procedure

Now you have everything together to build the self-consistent field loop. Remember, the Fock matrix in terms of the
two-electron integrals is given by

Fµν = Hµν +
∑
λ

∑
κ

(
Pλκ · (µν|κλ)− 1

2
Pλκ · (µλ|κν)

)
Make sure your definition of the density matrix matches the definition of the Fockian.

Exercise 12
1. First, you need to construct a new Fock matrix from the density matrix.
2. Construct a loop that performs your self-consistent field calculation.
3. Copy or move (whatever you find more appropriate) the necessary steps inside the SCF loop.
4. Define a convergence criterion using a conditional statement (if) based on the energy change and/or the change

in the density matrix and exit the SCF loop.
5. Compare your final HF energies with

Input E(RHF) / Eh

H2 –1.127785613
He –2.860251227
Be –14.568567143

6. Calculate the proton affinity of H2. H3+ has a D3h structure with RHH = 1.7 Bohr

4.1.10 Dissociation Curves

To calculate a dissociation curve we could either implement this functionality in the program itself or use an external
script to automatically write input files and read the program output to collect the necessary data. Since this approach is
common for computional chemistry, we will use a scripting approach here as well.
Modify the provided bash script to calculate a dissociation curve:

Listing 5: h2-diss.bash
#!/usr/bin/env bash

# stop on errors
set -eu

# Ensure non-localized printout
export LC_NUMERIC=en_US.UTF-8

# put the name of your program here ("./scf" or "fpm run --")
program=echo
# unique pattern to find the final energy
pattern='final SCF energy'
# output file for plotting
datafile=plot.dat

(continues on next page)
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(continued from previous page)

# scan distances
start_distance=1.4
last_distance=5.0
step=0.1

read -r -d 'END' input <<-EOF
2 2 2
0.0 0.0 0.0 1.0 1
1.20
0.0 0.0 DIST 1.0 1
1.20
END

EOF

tmpinp=temporary.inp
tmpout=temporary.out

# cleanup
[ -f $datafile ] && rm -v $datafile

steps=$(seq $start_distance $step $last_distance | wc -l)
printf "Scanning from %.3f Bohr to %.3f Bohr in %d steps\n" \

$start_distance $last_distance $steps

for distance in $(seq $start_distance $step $last_distance | sed s/,/./)
do

# generate the input file
echo "$input" | sed s/DIST/$distance/ > $tmpinp
# perform the actual calculation on the input file
2>&1 $program $tmpinp > $tmpout
# get the energy from the program output
energy=$(grep "$pattern" $tmpout | awk '{printf "%f",$(NF)}' | tail -1)
# if there is no energy to be found, we complain
if [ -z "$energy" ]

then
1>&2 printf "ERROR!\n"
1>&2 printf "'%s' cannot be found in '%s' output\n" "$pattern" "$program"
1>&2 printf "please inspect '%s' and '%s'\n" "$tmpinp" "$tmpout"
exit 1

fi
# otherwise we write to the logfile
printf "Current energy is %.8f Hartree for distance %.3f Bohr\n" \

$energy $distance
printf "%8.3f %12.8f\n" $distance $energy >> $datafile

done

# cleanup
[ -f $tmpinp ] && rm $tmpinp
[ -f $tmpout ] && rm $tmpout

Exercise 13
1. The above script only contains dummies and can be executed without performing a calculation. Perform such a

dry-run to understand how the script is working.
2. Modify it to match your program and plot the resulting dissociation curve.
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Note: In case the script exits an error message like

script.bash: Zeile 34: printf: 1.4: Ungültige Zahl.
script.bash: Zeile 34: printf: 5.0: Ungültige Zahl.
Scanning from 1,000 Bohr to 5,000 Bohr in 37 steps

your language settings might be set to something other then English (in this case German). To overwrite the localisation
settings run the script with

LC_NUMERIC=en_US.UTF-8 bash script.bash

4.2 Properties

With a working RHF program we have access to a wavefunction and we can use it to calculate certain properties.

4.2.1 Partial Charges

The total number of electrons in a system is given by

Nel =

N∑
µ

N∑
ν

PµνSνµ =

M∑
µ

(PS)µµ.

If your SCF wavefunction does not return its input number of electrons, the wavefunction is most certainly not properly
normalized. In this case recheck your SCF and integral implementation.
Based on the above formula, Mulliken concluded that the number of electrons associated with a particular nucleus is equal
to the number of electrons associated with its basis functions. Thus the partial Mulliken charge of atom A is defined as:

qA = ZA −
∑
µ∈A

(PS)µµ

Exercise 14
1. Code a subroutine to perform a Mulliken atomic population analysis
2. Determine the Mulliken atomic partial charges in LiH using the input file provided.

4.2.2 Charge Density

In terms of real contracted (Gaussian) basis functions, the electron density is given by

ρ(r) =
∑
µ

∑
ν

Pµνψµ(r)ψν(r).

To calculate the product of the two basis functions the Gaussian product theorem can be used

ϕ(α, r− RA) · ϕ(β, r− RB) = KAB · ϕ
(
α+ β, r− αRA + βRB

α+ β

)

58 Chapter 4. SCF program



Advanced Quantum Chemistry Methods, Release SoSe2024

where KAB is given by

KAB =

(
2αβ

(α+ β)π

) 3
4

exp[−αβ/(α+ β) ·R2
AB ]

Note that the norming constants of the Gaussians have been absorbed into the contraction coefficients already.

Exercise 15
1. Code a subroutine to calculate the electron density ρ at a given point in cartesian space.
2. Calculate and plot the electron density along the axis connecting the bonds in H2 and through the Be and He atoms.

Plot them together.

4.3 Geometry Optimization

The next task is to expand your program to perform a simple geometry optimization.

4.3.1 Numerical Derivatives

The simplest way to perform geometry optimizations is by using the information from the energy derivative. As we do
not want to code analytical derivatives of the Hartree–Fock energy expression, we will resort to numerical derivatives
instead. This requires to evalulate several SCF energies in one program run. Since you coded your SCF in a subroutine,
this should not be an issue. Nevertheless, try to run the subroutine several times to check if the code is correctly allocating
and initializing all variables. If errors show up now, you can fix them before adding much more code to your program.
Copy and modify your input files such that for each parameter (cartesian atomic coordinates and Slater exponents) θi, it
contains an integer indicating whether a numerical gradient with respect to θi is to be calculated. Create a new subroutine
that will allow the variation of one parameter θi at a time as necessary for each element of the numerical gradient

δE

δθi
≈ E(θ1, . . . , θi +∆θ, . . . , θn)− E(θ1, . . . , θi −∆θ, . . . , θn)

2∆θ
.

Specifically, the geometric derivative is given by (leaving out all other parameters the energy depends on)

δE

δRi
≈ E(Ri +∆R)− E(Ri −∆R)

2∆R
.

Exercise 16
1. Code a numerical gradient that allows the calculation of the derivative of the HF energy with respect to atom

positions and Slater exponents.
2. Save your gradient components to arrays analogous to the ones for the atom positions and Slater exponents. We

shall call the conceptual combination of them the gradient vector g.
3. By definition, in which direction does a gradient point? How is this different from the force?

4.3. Geometry Optimization 59



Advanced Quantum Chemistry Methods, Release SoSe2024

4.3.2 Steepest Descent

Similar to the SCF, parameter optimizations are performed iteratively and depend on a convergence criterion concerning
energy and/or size of gradient.
Code a variant of the “steepest descent” optimization routine as given by:

Θk+1 = Θk + ηgk

k denotes the number of the optimization cycle, Θ is the parameter set for an iteration. Choose η to get smooth, fast
convergence.

Exercise 17
1. Optimize the geometry of HeH+ in a minimal basis set.
2. Optimize the Slater exponents of Be and H2 (RHH = 1.4 Bohr) in a full double-ζ basis set. Compare to energies for

the est. HF basis set limit:

System Energy/Eh

H2 –1.134
Be –14.573

4.4 Unrestricted Hartree-Fock

Copy and modify your RHF subroutine to create an UHF program. The input files will need to be modified such that
they contain the number of α and the number of β electrons. By definition, the number of α electrons is bigger then the
number of β electrons. You can check the correctness of your results against the Li atom (Slater exponents 3.5, 2.0, 0.7
and 0.3: E = –7.419629 Eh) and the H atom.
For UHF you use one set of F, C and P matrices for each spin to solve the two eigenvalue problems

FαCα = SCαεα and FβCβ = SCβεβ

concurrently. They are coupled only through the formation of the Fock matrix via the Coulomb interaction as demon-
strated for Fα below:

Fα
µν = hµν +

∑
λ

∑
κ

(
(Pα

λκ + P β
λκ) (µν|κλ)− Pα

λκ (µλ|κν)
)

Note that the calculation of P differs in the occupation number and for closed-shell test cases provided your UHF program
must give RHF results. For this reason, you have to break the spatial symmetry of your system to obtain the UHF solution,
if it is available. The easiest way to do this is through the initial guess. If you use a symmetric guess (like P = 0), you will
only find the RHF solution.
The UHF Energy is given by:

E =
1

2

∑
µν

(
Pα
µν(hνµ + Fα

νµ) + P β
µν(hνµ + F β

νµ)
)

Exercise 18
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1. Calculate and plot the dissociation/potential curves for 3H2, 1H2 and 1Li2.
2. The exchange reaction H2 + H → H + H2 has a linear symmetric transition state. Find it and its relative energy.
3. Calculate the first ionization potential of Be. The experimental value is 9.3 eV.
4. Are He2+ or 3He2 bonded?

4.4.1 Spin Contamination

Recall that spin contamination can occur in UHF calculations, i.e. deviations of the expectation value of the square of the
total spin angular momentum operator S2 from the ideal value:

⟨Ŝ2⟩UHF = ⟨Ŝ2⟩exact +∆

⟨Ŝ2⟩exact =
Nα

el −Nβ
el

2
·

(
Nα

el −Nβ
el

2
+ 1

)

Calculate the spin contamination according to

∆ = Nβ
el −

Nα
el∑
i

Nβ
el∑
j

∣∣∣⟨χα
i |χ

β
j ⟩
∣∣∣2

where i, j indicate α and β-MOs, respectively.

Exercise 19
1. For the system:

h 0.0 0.0 -1.0
h 0.0 0.0 0.0
h 0.0 0.2 1.0

and a Slater exponent of 1.24, you should find a spin contamination of 0.004682 and a UHF energy of -1.265643.
2. Plot the spin contamination along both RHF and UHF dissociation curves of H2.
3. Why is the spin contamination of RHF always 0?

4.5 Møller–Plesset Perturbation Theory

Using your RHF program, code a subroutine to calculate the RMP2 energy after your RHF procedure has converged.
The RMP2 correction to the HF energy (assuming real MOs a, b, r, s) can be written as

W2 =

Nel/2∑
a,b=1

M∑
r,s=

Nel/2+1

(ar|bs) [2 (ar|bs)− (as|br)]
εa + εb − εr − εs

.

As for all correlation methods, you will need to have two-electron integrals over MOs (denoted by Roman letters) instead
of over AOs (Greek letters). The process to obtain them is called AO-MO-Transformation. There are different algorithms
possible, among them are one to scale with M8 and one with M5 that takes approximately twice as much memory. For
now, code up the straigthforward algorithm to transform the two-electron integrals. This is the one that scales with M8.
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Input E(RHF) / Eh Ec(MP2) / Eh

H2 –1.127785613 –0.012541746
He –2.860251227 –0.012686549
Be –14.568567143 –0.014939565

In contrast to the M8 variant, where you transform from (µν|λκ) to (ar|bs) at once, you need to transform the two-
electron integrals step-by-step:

(µν|λκ) → (aν|λκ) → (ar|λκ) → (ar|bκ) → (ar|bs)

Exercise 20
1. Copy your RMP2 routine and modify it such that your integral transformation scales with M5.
2. For the provided examples H2 and LiH compare the efficiency of both algorithms by counting the number of cycles

passed through in the most inner loops. What happens if you increase the number of Slater functions by a factor
of two?

3. Calculate the dissociation curve of H2 with RMP2. Plot both the RHF and RMP2 curves on a relative energy scale
(in kcal/mol) in a minimal STO basis with Slater exponent of ζ = 1.2. As in the provided input for H2, the Hartree-
Fock energy of a hydrogen atom is –0.4798356 Eh. What behavior do you observe compared to RHF close to the
equilibrium and at far distances R = 10 Bohr?

4. Calculate the dissociation curve of He2 between 4 and 10 Bohr with RHF and RMP2 and plot them on a relative
energy scale (in kcal/mol). You will find that there is a minimum in each curve. From your knowledge about HF
and MP2, did you expect this behavior? What effect could be the cause for the minimum in the RHF curve?
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FIVE

RECOMMENDATIONS

5.1 General Recommendations

5.1.1 Working with this Script

1. Work on the exercises in the given successive order. In the first exercises you will learn some basic routines and
procedures which you will need again later but which will not be explained once more.

2. Read the whole exercise before you start working on it. Often technical hints are given at the end.
3. Programs can crash. So check your outputs as soon as possible to make sure your calculations actually did work.

And sometimes preparing the input and running the program is much faster than finding the right number in the
output.

4. Prepare an LibreOffice sheet (or similar) with a collection of your results. Checking them this way is much easier
for us.

5.1.2 Trouble Shooting

Many programs may cause many problems, therefore you should follow some simple guidelines to identify their origins:
• “Crap in, crap out”: Always check your input (input structures, file formats, input file, chosen keywords etc.) before
you start a calculation.

• If a calculation stops abnormally check the output (e.g. orca.out, job.last etc.) and error files first. Always make
sure that you pipe all needed output data into files if its not done by default.

• Read your output and error files carefully. Especially check the last lines of the output file for error messages that
give a hint what may caused the problem.

• If you identified the problem (maybe you have to start at the first point again), check the program manual for
additional options or trouble shooting help, fix the problem and restart your calculation.

• If the calculation still stops abnormally and all other possibilities and options are exhausted, prepare a detailed
description of the problem, the output/error messages and contact one of the tutors.
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5.2 Software Recommendations

5.2.1 Logging in to your work machine

At the beginning of the course you got a number of the computer you will work on.
First you need access to the intranet. The only way to access any machine in the facility is by tunneling via the ssh-server.
You will receive an account on one of the ssh-servers as well.

Important: The ssh-server is not only used by you, but also by your fellow students and possibly also by members of the
institute. We expect responsible behaviour from you on the server, because many people depend on those servers running
reliably.
Whatever you do, never copy large files to the ssh-server, it has only very limited disk space. Also do not run any resource
consuming program on the server (anything that needs a GUI is per definition resource consuming if used on shared
resources).

First, we will work with three machines in this tutorial, your local machine (M-Bot), the ssh-server instance (ssh3) and
the CIP computer (c00). c00 is an existing machine, you can log in there as well, it is also the least powerful machine,
therefore, just do not use this machine for computations, use the one you were assigned. Your local username might also
be different from the one in the facility, we will use stahn for the user on the local machine as well as for the user at the
facility.

Attention: When following the steps described afterward, you have to change the respective names (both usernames
and hostnames), of course. You will not be able to use ssh3 to log in the ssh server, but a different machine (most
likely ssh5).
Please read the tutorial and the code snippets carefully, understandwhat is shown and adapt the commands accordingly.
A copy and paste approach on this tutorial will fail!

Wewill always show a prompt with username and hostname to illustrate who and where we are. To setup a similar prompt
in your shell set the following in your bashrc (note that you will have several bashrcs, one on each machine).

PS1='[\u@\h \W] \$ '

Note for Windows Users
Don’t worry if you are using WSL under Windows. You can do all the following steps as described. Just find the notes
when things behave a bit special.

The easy way

If you log in for the first time you will be asked for confirming the host identity, do so. The request will be gone if you
log in a second time.

1 stahn@M-Bot:~/.ssh$ ssh -Y stahn@ssh3.thch.uni-bonn.de
2 The authenticity of host 'ssh3.thch.uni-bonn.de (131.220.44.130)' can't be␣

↪→established.
3 ECDSA key fingerprint is SHA256:eEdQpqyV6oP0Ddra7H2QDI6kC9rX3XQRAlWxX6LfA6U.
4 Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

(continues on next page)

64 Chapter 5. Recommendations



Advanced Quantum Chemistry Methods, Release SoSe2024

(continued from previous page)
5 Warning: Permanently added 'ssh3.thch.uni-bonn.de' (ECDSA) to the list of known hosts.
6 Password:
7 stahn@ssh3:~> ssh -Y stahn@c00
8 The authenticity of host 'c00 (172.17.3.20)' can't be established.
9 ECDSA key fingerprint is SHA256:ozq72tQ9gROvzDwv+ZFQ7wc+L/Dmu9Fptbfhf2zfd1M.
10 Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
11 Warning: Permanently added 'c00,172.17.3.20' (ECDSA) to the list of known hosts.
12 Password:
13 Have a lot of fun...
14 stahn@c00:~> logout
15 Connection to c00 closed.
16 stahn@ssh3:~> logout
17 Connection to ssh3.thch.uni-bonn.de closed.
18 stahn@M-Bot:~/.ssh$ ssh -Y stahn@ssh3.thch.uni-bonn.de
19 Password:
20 Last login: Thu Feb 17 16:39:19 2022 from 131.220.44.207
21 stahn@ssh3:~> ssh -Y stahn@c00
22 Password:
23 Last login: Thu Feb 17 16:39:35 2022 from 131.220.44.130
24 Have a lot of fun...
25 stahn@c00:~>

Note: In the following guide we will highlight every line, which requires user input

From here you have everything you need to work on the machines, but it might get somewhat inconvenient because you
have to type your password every time. Also copying files back to your machine is not easily possible, because you shall
not copy big files to the ssh-server.
The following guide is a bit lengthy, but you only have to do it once and you can easily work and move files between your
local computer and your work machine.

The right way

We start on your local machine, we create the ssh directory in your home by

1 stahn@M-Bot:~$ cd ~
2 stahn@M-Bot:~$ mkdir .ssh
3 stahn@M-Bot:~$ chmod 700 .ssh

The last step ensures that you and only you have access to your ssh keys, never allow anyone else access to this directory!

Note for Windows Users
Using WSL, you might have two .ssh directories. The Linux one is the same as above and found in:

~/.ssh

The Windows one can be found in your Windows home directory (assuming stahn is your Windows username):

/mnt/c/Users/stahn/.ssh

Don’t get confused by that and decide upon one of these directories (e.g. the Linux one) for the next steps. If something
doesn’t work, check if there are perhaps doubled files interfering each other.
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We enter the ssh directory to create a new ssh-keypair, we recommend using elliptic curve keys because they are short
and fast:

1 stahn@M-Bot:~/.ssh$ ssh-keygen -t ed25519
2 Generating public/private ed25519 key pair.
3 Enter file in which to save the key (/home/stahn/.ssh/id_ed25519): id_ssh3
4 Enter passphrase (empty for no passphrase):
5 Enter same passphrase again:
6 Your identification has been saved in id_ssh3
7 Your public key has been saved in id_ssh3.pub
8 The key fingerprint is:
9 SHA256:bDVv26H9hIx1K21pFRZXF2pqfD8Mw9osb2K5opLeOHU stahn@M-Bot
10 The key's randomart image is:
11 +--[ED25519 256]--+
12 | o*|
13 | . +|
14 | o o o |
15 | . ..o+ . .|
16 | S +o=o o|
17 | o E..=O*++|
18 | o . o=+=X.|
19 | +o . +o.+o.|
20 | .ooo. o.+. .|
21 +----[SHA256]-----+

The key-generator will prompt you a to enter a filename, we will name the key id_ssh3, choose any name you find
appropriate.

Tip: A very good read on the generation of ssh-keypairs is the Arch Linux wiki page on ssh-keys.

Nowwe need to copy the public key to the ssh-server. Since you log in for the first time, you have to provide your password
in line 5:

1 stahn@M-Bot:~/.ssh$ ssh-copy-id -i id_ssh3 stahn@ssh3.thch.uni-bonn.de
2 /usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "id_ssh3.pub"
3 /usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out␣

↪→any that are already installed
4 /usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted␣

↪→now it is to install the new keys
5 Password:
6

7 Number of key(s) added: 1
8

9 Now try logging into the machine, with: "ssh 'stahn@ssh3.thch.uni-bonn.de'"
10 and check to make sure that only the key(s) you wanted were added.

You can check, if your key was succesfully added by logging into the machine. The ssh-server will probably be unknown
to your local machine, therefore, you have to add it to your known hosts list first, type yes when prompted in line 4.

1 stahn@M-Bot:~/.ssh$ ssh stahn@ssh3.thch.uni-bonn.de
2 The authenticity of host 'ssh3.thch.uni-bonn.de (131.220.44.130)' can't be␣

↪→established.
3 ECDSA key fingerprint is SHA256:eEdQpqyV6oP0Ddra7H2QDI6kC9rX3XQRAlWxX6LfA6U.
4 Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
5 Warning: Permanently added 'ssh3.thch.uni-bonn.de' (ECDSA) to the list of known hosts.
6 Last login: Thu Feb 17 13:56:18 2022 from 131.220.44.207
7 stahn@ssh3:~>
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We need to register the ssh-server now in our configuration file

1 stahn@M-Bot:~/.ssh$ vim config

We will use vim here but feel free to edit the file with your preferred editor and add the lines:

1 Host ssh3.thch.uni-bonn.de
2 IdentityFile ~/.ssh/id_ssh3

Now we will try again, to see if our connection is correctly established.

1 stahn@M-Bot:~/.ssh$ ssh stahn@ssh3.thch.uni-bonn.de
2 stahn@M-Bot:~/.ssh$

If you are prompted for a password your setup is wrong and you have to retry.

Tip: You can also optionally add your username to the ssh config file and set up a custom Hostname for the ssh-server.

Host ssh3
Hostname ssh3.thch.uni-bonn.de
User stahn
IdentityFile ~/.ssh3/id_ssh3

This will allow you to easily connect to the ssh-server by just typing:

stahn@M-Bot:~/.ssh$ ssh ssh3
Last login: Thu Feb 17 13:57:03 2022 from 131.220.44.207
stahn@ssh3:~>

Now we have to repeat the same steps for the machine at the facility, but first we need to be able to directly connect to it
from our local working machine. We do so by altering the ssh-config and adding the following lines:

1 Host c00
2 ProxyJump ssh3
3 User stahn

We just told our system, that it needs to use the ssh-server as a proxy for connecting to our remote working machine.
This enables us to connect to our remote working machine at the facility by a single ssh command:

1 stahn@M-Bot:~/.ssh$ ssh c00
2 The authenticity of host 'c00 (<no hostip for proxy command>)' can't be established.
3 ECDSA key fingerprint is SHA256:ozq72tQ9gROvzDwv+ZFQ7wc+L/Dmu9Fptbfhf2zfd1M.
4 Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
5 Warning: Permanently added 'c00' (ECDSA) to the list of known hosts.
6 Password:
7 Have a lot of fun...
8 stahn@c00:~>

Now we generate another keypair (always use a new keypair for each connection) and register the connection like before:

1 stahn@M-Bot:~/.ssh$ ssh-keygen -t ed25519
2 Generating public/private ed25519 key pair.
3 Enter file in which to save the key (/home/stahn/.ssh/id_ed25519): id_c00
4 Enter passphrase (empty for no passphrase):
5 Enter same passphrase again:
6 Your identification has been saved in id_c00

(continues on next page)
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(continued from previous page)
7 Your public key has been saved in id_c00.pub
8 The key fingerprint is:
9 SHA256:mUBCFiGUc6kqbb1fspxwQ0k9V0eT8sg59bV80w7jPTM stahn@M-Bot
10 The key's randomart image is:
11 +--[ED25519 256]--+
12 | .oo*+. ..+. |
13 | oooo . ...o..|
14 | + o o .. *..+|
15 | . . o = = +++|
16 | o . o S o =o|
17 |o o .. .Eo|
18 |.. ..+ . +|
19 | .+ * |
20 | .= |
21 +----[SHA256]-----+
22 stahn@M-Bot:~/.ssh$ ssh-copy-id -i id_c00.pub c00
23 /usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed: "id_c00.pub"
24 /usr/bin/ssh-copy-id: INFO: attempting to log in with the new key(s), to filter out␣

↪→any that are already installed
25 /usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed -- if you are prompted␣

↪→now it is to install the new keys
26 Password:
27

28 Number of key(s) added: 1
29

30 Now try logging into the machine, with: "ssh 'c00'"
31 and check to make sure that only the key(s) you wanted were added.

Finally we want to include the new ssh-key to our ssh-config by adding the following lines to our ssh-config:

1 Host c00
2 ProxyJump ssh3
3 User stahn
4 IdentityFile ~/.ssh/id_c00

Now try to login to the work machine again (remember to specify the X forwarding).

1 stahn@M-Bot:~/.ssh$ ssh -Y c00
2 Last login: Thu Feb 17 15:00:38 2022 from 131.220.44.130
3 Have a lot of fun...
4 stahn@c00:~>

Again, if you have to enter your password, the setup was not correct and you have to retry. From now on, you can also
copy files from and to your work machine.

1 stahn@M-Bot:~/.ssh$ scp Lehre/lect3_htm.doc c00:Documents/.
2 stahn@M-Bot:~/.ssh$ scp c00:Lehre/QC2.pdf ~/Lehre/QC2/.

As a short recap, you should now be able to log in with a single command.

1 stahn@M-Bot:~/.ssh$ ssh c00
2 Last login: Thu Feb 17 15:08:55 2022 from 131.220.44.130
3 Have a lot of fun...
4 stahn@c00:~>
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Tips and Tricks

For the three machine setup we had, a configuration file like the following would be appropriate:

1 Host c00
2 User stahn
3 IdentityFile ~/.ssh/id_c00
4 ProxyJump ssh3
5

6 Host ssh3
7 Hostname ssh3.thch.uni-bonn.de
8 User stahn
9 IdentityFile ~/.ssh/id_ssh3

If you are working remotely over ssh, any process you start with the shell will be terminated as soon as you log out. Keeping
your process alive, requires that you detach the process from your terminal. You can create a completely detached process
by:

stahn@M-Bot:~/.ssh$ setsid xtb h2o.xyz > xtb.out

However, keep in mind, that you have no control at all over this process after starting it. Normally, setting the process to
ignore Hangup Signals and rerouting the output of the process is enough to keep it alive. You can do so by using nohup.

stahn@M-Bot:~/.ssh$ nohup xtb h2o.xyz &

Any output created by the process will be printed to nohup.out.

Note: nohup is a useful to run commands on your work machine that should continue even if you log out from the
ssh-session.
More lengthy calculations with quantum chemistry software are a potential target for this approach. But think first before
adapting the above command, because you probably want to keep the output instead of scrapping it to /dev/null.
Also, you won’t have to kill your program in the end, because it will terminate on its own.

If you like the prompt style and want to use it for your bash as well, there is also a colorful version available. Just add this
lines to your bashrc (if you always want a full path use \w instead of \W).

1 if ${use_color} ; then
2 if [[ ${EUID} == 0 ]] ; then
3 # show a red prompt if we are root
4 PS1='\[\033[01;31m\][\h\[\033[01;36m\] \W\[\033[01;31m\]] \$\[\033[00m\] '
5 else
6 PS1='\[\033[01;32m\][\u@\h \W] \$\[\033[01;37m\] '
7 fi
8 else
9 if [[ ${EUID} == 0 ]] ; then
10 # show root@ when we don't have colors
11 PS1='[\u@\h \W] \$ '
12 else
13 PS1='[\u@\h \W] \$ '
14 fi
15 fi

Note: If you want other colors, play a bit around with the last number in the bracktes ([033[01:31m]). If you want your
username in different color than your path you can also specify this. Play a bit around with it.
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5.2.2 X-Server or How to make your graphical connection work (optional)

Sometimes it is easier to directly have a look at structures or plots, instead of copying everything to your local computer.
Therefore, we recommend an application that enables you to open graphical interfaces on the CIP Pool computers in
the Mulliken Center and see the opened windows on your home computer. For everyone, who is interested, just google
“X-Server connection windows linux” or some similar combination and try to install this on your own. For all others:
Install Xming, a free Windows stand-alone program, and follow the setup there. Afterwards, always ensure that Xming
is running, when you open a shell and try to open some visualization software. For that, you only have to start Xming
(press the Windows button, type Xming and press enter), then the Xming symbol will appear at your taskbar. Now you
can login as described above (remember to have Xming running).

5.2.3 Software for Visualization of Molecules

A quantum chemical calculation always needs a structure as input (and will often result in a modified structure as output),
so you need some kind of visualization program to create the desired molecule or to look at it. We recommend the use of
the program Avogadro to generate and manipulate molecules. Next, you will need the programmolden for some exercises
(we recommend the version gmolden). You can open an input file (e.g. molden.input or a *.xyz file) by typing:

gmolden <input>

For Windows users that have unpacked the above linked .rar file, we recommend opening the input file (molden.
input or *.xyz) by right-clicking on it and selecting “Open with”, then choose the unpacked gmolden.exe file in
the molden64\bin folder. You can also use gmolden for generation and manipulation of molecular structures, but
we recommend the use of Avogadro. Of course you can also use any other visualization software you know. Please
remember that for some exercises it is important to keep the atom count during themanipulation of themolecule geometry,
which some of the more common programs do not do (Avogadro keeps it).

Note: During testing gmolden with Windows 10, we encountered problems if the path contains blanks or umlauts
(e.g. C:Program Filesmolden). If you cannot open gmolden on your windows computer, copy the molden folder to you
desktop and try again.

5.2.4 Plotting

For some exercises you have to create proper plots. In our group we usually use gnuplot for this, a powerful program
if you can handle it. gnuplot scripts for any plotting problem you can imagine (and much more) are easy to find on the
Internet. In general, you tell the program via a small script in which format you want your final picture, you name your
axis and then plot directly from an external file. In the following, you will find a small script called plot.gp to plot your
data points as a line with gnuplot.

1 set terminal pdf color font 'Times-Roman, 30' # Produce files in pdf format as␣
↪→output, you can also choose jpeg, eps, or whatever you like

2 set output 'NAME.pdf' # your final file is named "NAME.pdf"
3 set encoding iso_8859_1 # Sometimes needed for e.g. the

↪→"angstrom" symbol
4

5 set key font "Times-Roman, 20" # Sets a legend for your plot.
6

7 set xlabel "X-AXIS" font",20" # Sets name for the X-axis (don't␣
↪→forget the unit!)

8 set xtics nomirror # Tells gnuplot, that the scale is␣
↪→only shown on one side

(continues on next page)
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(continued from previous page)
9 set xtics font 'Times-Roman, 20' # Sets font for the x-scale
10 set xzeroaxis # Draws a line at y=0
11 set ylabel "Y-AXIS" font",20" # Same as for the X-axis, just for␣

↪→the y-axis
12 set ytics nomirror
13 set ytics font 'Times-Roman, 20'
14

15 plot \ # Finally the plot command. The "\"␣
↪→tells gnuplot to also plot the next line. Remove the out-commented description␣
↪→before plotting, as it can cause errors.

16 'file.txt' u 1:2 w l lw 2, \ # "file.txt" is the File which will␣
↪→be plotted. "u 1:2" means literally "use column 1 and 2", "w l" = with lines ("w lp
↪→" = with line points, prints a line with points at the respective data points), "lw␣
↪→2" = linewidth 2. You can do many more things here, these are just some exemplary␣
↪→points. Remove this comment before plotting.

Copy this file in your working directory, if you want to plot something with gnuplot. For actually plotting your data,
change at least file.txt to however your file with the data points is called, and then type:

gnuplot plot.gp

Now you can find your graphic NAME.pdf in the directory, where you executed your plot script. To look at it, you can
either copy the file to your local computer (and use whatever pdf reader you use to open it), or you can open it with e.g.
Okular (preinstalled on the MCTC computers) by typing:

okular NAME.pdf

Remember that you need a graphical connection for the latter. If you now want to change something in your plot, you
just have to modify the script plot.gp and plot it again as described above.
Instead of gnuplot, you can also use any other plotting program (Microsoft’s Excel, LibreOffice’s Calculator, SciDavis,
you name it). In the end, it is only important that the plots follow some simple rules:

1. Axes are labeled with the correct expression and unit (e.g. time / h).
2. Axes are divided with markings/tics and numbers.
3. All lines in a plot should look different. Different colors are one possibility, which breaks down by printing the

protocols in black and white. You can, of course, use colors, but if you are plotting more than one line, you must
also make sure that each line is distinguishable without color (e.g. by using different markers).

4. Remember: the first thing you usually look at in publications are pictures. Writing protocols prepares you for
writing scientific papers, so it is also important to learn how to create nice figures. Every letter (title, axes, etc.)
and also the lines should be printed in a size that we can see them at a glance without a magnifier. Avoid similar
colors and markings if possible. Name your curves with meaningful expressions.

All figures in your final report must have captions that adequately describe the illustration. Captions should describe the
contents of a figure in as few words as possible.

Hint: If you do not immediately understand your own plot after two days, it is probably bad. Rethink.
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5.2.5 Summary

Check the .bashrc of your local Linux distribution and add export DISPLAY=localhost:0.0, if you want to
use a graphical interface to the MCTC computers.

Table 1: Program,local / MCTC,Links (if local installation
needed),optional?

Program local / MCTC Links (if local installation needed) optional?
Xming local https://xming.en.softonic.com yes
avogadro local / MCTC https://avogadro.cc/ no
molden local / MCTC https://ftp.science.ru.nl/Molden/bin/Windows/molden_

native_windows_full.rar
no

gnuplot MCTC [-] yes
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CHAPTER

SIX

QUANTUM CHEMISTRY SOFTWARE

This section will give a short introduction and an overview of the Quantum Chemistry programs that will be used in this
practical course.
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∗ TURBOMOLE
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∗ ORCA
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– Short ORCA Reference

6.1 Setting up the Software

In order to gain access to the needed software packages, you need to make some changes to your system. The .bashrc
file located in your home directory is sourced every time you open a new shell. While you can directly execute any program
by giving the full path, it is more convenient to tell the system where to look for the binaries by saving the location in the
$PATH variable. Additionally, some programs need global variables. All those are usually set in the .bashrc. In order
to gain access to all the needed software, add the following lines to your .bashrc:

1 # make environment modules available
2 export BASH_ENV=/usr/share/lmod/lmod/init/bash
3 . ${BASH_ENV} > /dev/null
4

5 module use /home/abt-grimme/modulefiles
6 module load turbomole orca
7 alias molden='/software/bin/molden'
8

9 # AKbin
10 export PATH=/home/abt-grimme/AK-bin:$PATH
11 export PATH=/home/$USER/bin:$PATH
12

13 # XTB

(continues on next page)
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(continued from previous page)
14 export OMP_NUM_THREADS=2
15 export MKL_NUM_THREADS=2
16 export OMP_STACKSIZE=500m
17 ulimit -s unlimited

Be sure to create a directory called bin in your home directory by typing:

mkdir ~/bin

Important: All changes apply to shells opened afterwards.

If you want to apply the changes to your current shell, you need to run:

source ~/.bashrc

6.2 Program Packages

6.2.1 TURBOMOLE

To run a basic calculation with TURBOMOLE, you will only need the following two files:
• coord: Molecular geometry in atomic units
• control: All data required for the calculation (method, parameters, … )

For more sophisticated calculation settings, TURBOMOLE provides an interactive input generator called definewhich
only needs thecoord file to create the control file. Basis set and orbital files, that are also necessary for the calculation,
are created during the calculation or by define, respectively. These are:

• basis (and auxbasis): Basis set (and auxiliary basis set for RI)
• mos or alpha and beta: Orbitals (MO coefficients) for restricted and unrestricted treatment, respectively

In this course, all calculations can be prepared manually by only providing a coord and a control file containing all
the necessary information.
TURBOMOLE has different binaries and scripts for different jobs. While they do not need an explicit input file when
called, you should always pipe the output into a file, e.g.:

ridft > ridft.out &

The most important scripts that come along with the TURBOMOLE program package are listed in the following table.
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TURBOMOLE script Functionality
Most important scripts for calculations
ridft DFT and HF SCF calculations with the RI-approximation
dscf DFT and HF SCF calculations without the RI-approximation
ricc2 Module for second-order correlated WF methods (MP2, CC2)
ccsdf12 Module for coupled cluster methods (CCSD, CCSD(T), …)
rdgrad, grad Calculate gradients (with and without RI)
aoforce Calculate analytical vibrational frequencies
statpt Coordinate/Hessian update for stationary point searches
jobex Script for geometry optimizations
Scripts for visualization purposes
eiger Show the orbital energies and the HOMO-LUMO gap
x2t Convert a *.xyz (in Å) file to coord (in bohr)
t2x Convert a coord (in bohr) file to *.xyz (in Å)
tm2molden Generate a molden input

Important: Each TURBOMOLE calculation needs its own directory.

The control file

While coord stores the molecular geometry, the control file contains all the specifications and settings for the desired
calculation. It contains keywords indicated with a $ symbol followed by some setting. Related specifications sometimes
follow in the next line and are indented. Every control file must end with the $end keyword in the last line. An
example input for a simple DFT calculation on the BLYP/def2-TZVP level of theory can look as follows:

1 $coord file=coord
2 $atoms
3 basis = def2-TZVP
4 $dft
5 functional b-lyp
6 $end

In the following exercises, some proper TURBOMOLE input will always be given (at least partially) in the text. Addi-
tionally, you can find a short list of all keywords needed in this course in the Keywords in control section below.

6.2.2 ORCA

ORCA needs an input file (e.g. myinput.inp) to run. A typical call to perform a calculation with ORCA would be

orca myinput.inp > myinput.out &

The input file is generally structured as follows:

1 # Comment lines are marked with an '#' and are possible everywhere
2 ! Method Basis and further options
3

4 # Input is organized in blocks which start with '%'
5 # e.g.
6 %scf

(continues on next page)
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(continued from previous page)
7 MaxIter 150 #maximum number of iteration steps in the scf,
8 #default = 50
9 end
10 # definition of input geometry
11 * xyz <charge> <multiplicity>
12 cartesian coordinates (Angstroms)
13 *
14 or:
15 * int <charge> <multiplicity>
16 Z-Matrix
17 *
18 or:
19 * xyzfile <charge> <multiplicity> <filename.xyz>

Important: Multiplicity = 2S+1 with S being the total spin.

A short reference of ORCA keywords can be found in the section Short ORCA Reference. Further information is accessible
from: https://sites.google.com/site/orcainputlibrary/.

6.3 Keywords in control

The control file contains all specifications and settings for a calculation with TURBOMOLE. Keywords start with $
and sub-settings are indented. The last line of the file must always be $end. The following table shows the most important
keywords that are interesting for this course.
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Command Functionality
essential for all calculations

$coord file=coord

Defines the coord file to be the one containing the
molecular structure information.

$atoms
basis=<bas>

Defines the basis set for the calculation to be <bas>.

always recommended

$eht charge=<chrg> unpaired=<uhf>

Defines the charge <chrg> and the number of unpaired
electrons <uhf> for the extended Hückel guess and the
entire rest of the calculation.

$symmetry <sym>

Use the symmetry of pointgroup <sym>. If not stated
otherwise, in the scope of this course it is always rec-
ommended to use C1 symmetry to avoid technical issues
(choose c1).

$rij Use the resolution of the identity (RI) approximation.
Note that you then have to use ridft for single-point
calculations and the -ri option for jobex.
We recommend using the RI approximation for all
exercises in this course.

$energy file=energy
$grad file=gradient

For geometry optimizations: The energies and gradient of
all optimization cycles will be saved in the files energy
and gradient.

DFT calculations

$dft
functional <func>
grid <grid>

Perform a DFT calculation using the functional
<func>. Note that the BYLP, B3YLP and B2PLYP
functionals are named b-lyp, b3-lyp and b2-plyp,
respectively. Define the integration grid <grid>
(optional, the default is m4).
For double-hybrid functionals, also include the settings
for MP2 calculations listed below ($ricc2 and
$denconv blocks).

$disp3 -bj

Use the D3 dispersion correction with Becke-Johnson
damping.

Note: If the $dft block is missing, a HF calculation will be performed.

Post HF calculations

$scfconv 7
$denconv 1.0d-7

For MP2 and CC calculations, a well-converged SCF run
is needed. Therefore, set the convergence threshold of the
SCF and the density matrix to 10−7 or less.

$ricc2
mp2
geoopt model=mp2

Perform an MP2 single-point calculation.
The geoopt model=mp2 keyword is only necessary
if a geometry optimization on the MP2 level is desired.

$ricc2
ccsd(t)

Perform a CCSD(T) single-point calculation.

other settings

$cosmo
epsilon=<epsilon>

Use the condctor like screening model COSMO with the
dielectric constant <epsilon> of the solvent.

$scfiterlimit <limit>

Defines the maximum number of iterations in an SCF cal-
culation (default <limit> is 30). If an SCF did not con-
verge, try increasing this value, e.g. to 100.

$statpt
itrvec <imag>

Specify the number of imaginary vibrational frequencies
<imag> that shall be obtained by a geometry optimiza-
tion (default is itrvec 0 for minimum structures). Set
to itrvec 1 for transition state optimizations.
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6.4 Short ORCA Reference

You can find a rough summary of the most important ORCA keywords in the following table. For a complete reference,
consult the manual at https://orcaforum.kofo.mpg.de/.

Keyword Explanation
RHF Restricted Hartree-Fock
UHF Unrestricted Hartree-Fock
TPSS DFT with the functional TPSS (can be any valid func-

tional)
MP2 Do an MP2 calculation.
CCSD(T) Do a CCSD(T) calculation.
TZVP Use a TZVP basis. Can be any valid basis set definition
Opt Do a geometry optimization.
RI Use the resolution of the identity approximation.
NumFreq

Calculate second derivatives (vibrational frequencies).
Also gives an IR spectrum and thermal corrections +
ZPE.

NMR Calculate nuclear magnetic shielding tensors.
TightSCF Increases the convergence criterion for the SCF.
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7.1 Electron Correlation

7.1.1 Multireference Methods

Exercise 1.1
Electron correlation is very important in dissociation processes to get qualitatively and quantitatively correct results.
Calculate the potential energy curves for the dissociation of HF with the single-reference methods RHF, UHF, MP2,
CCSD(T) and CASSCF, which is a multi-reference method. Compare the results.

Approach
1. In order to easily calculate potential energy curves, we use ORCA. Create the following inputs for the givenmethods

and save them in different directories. (e.g. rhf.inp, uhf.inp, etc.).
Input for RHF:

1 ! RHF def2-TZVP TightSCF
2

3 %paras R= 4.0,0.5,35 end
4

5 * xyz 0 1
6 H 0 0 0
7 F 0 0 {R}
8 *

Modifications for
UHF:

1 ! UHF def2-TZVP TightSCF
2

3 %scf BrokenSym 1,1 end

MP2:

1 ! RHF MP2 def2-TZVP TightSCF

CCSD(T):

1 ! RHF CCSD(T) def2-TZVP TightSCF

CASSCF (2 active electrons in 2 orbitals):

1 ! RHF def2-TZVP TightSCF Conv
2

3 %casscf
4 nel 2
5 norb 2
6 switchstep nr
7 end

Calculate the potential energy curve by a CASSCF calculation with 6 electrons (nel) in 6 active orbitals (norb)
as well.

2. Call ORCA with the command
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orca <file>.inp > <file>.out

3. Plot the resulting potential energy curves e.g. using gnuplot (see section Plotting). To do so, delete the first line
in the files <filename>.trj*.dat to read them (find out which file is the right one yourself).

4. Calculate the energies for hydrogen and fluorine atoms for all given methods. Whichmethods will yield the identical
energies for the hydrogen atom?

5. Plot the curves relative to the energies of the individual atoms and discuss your results (particularly the energies at
large distances).

Hint: Have a closer look at the UHF dissociation curve. Does it look as you would expect it? Try to explain the “strange”
behavior in terms of symmetry breaking.

Hint: If you encounter convergence problems in the CAS(6,6) calculations, try increasing the maximum number of
macro-iterations for CASSCF by adding the following keyword in the %casscf block:

6 maxiter 1000

7.1.2 Carbenes

All following calculations will be done with TURBOMOLE if not stated otherwise. Also, if not specified otherwise we
will use the RI approximation and C1 symmetry throughout.

Exercise 1.2
Calculate the singlet-triplet splitting of methylene and p-benzyne with HF, MP2, DFT and CCSD(T).

Approach
1. Create the file coord with starting geometries for Methylene and p-Benzyne.

The syntax is:

1 $coord
2 x y z atom1
3 x y z atom2
4 ...
5 ...
6 $end

You can either create the files by hand or use the program Avogadro for this purpose (see section Software for
Visualization of Molecules). Avogadro uses Å as unit, but the unit for the coord file has to be bohr (atomic
units). To convert a *.xyz file into a coord file you can use the command

x2t *.xyz > coord

This also works the other way round:

t2x coord > *.xyz
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2. Methylene: Optimize the geometries of the singlet and the triplet state with the given methods (HF, TPSS, B3LYP,
PW6B95,MP2) and the basis set def2-TZVP. The following input is an example of acontrol file with the correct
options for a B3LYP/def2-TZVP calculation of the triplet (= 2 unpaired electrons) state.

1 $coord file=coord
2 $eht charge=0 unpaired=2
3 $symmetry c1
4 $atoms
5 basis=def2-TZVP
6 $dft
7 functional b3-lyp
8 $rij
9 $energy file=energy
10 $grad file=gradient
11 $end

To generate the input for the other calculations, please look at the table provided in section Keywords in control.
For the MP2 calculations, exchange the $dft with the proper $ricc2 block and don’t forget to specify
$denconv small enough.
Geometry optimizations (DFT, HF) are done with the program jobex:

jobex -ri > jobex.out

Note that for MP2 geometry optimizations, you have to add the -level cc2 option. Energies after geometry
optimizations can be found in the file job.last. HF and DFT energies for each SCF-cycle are additionally
written in the file energy. In the case of CCSD(T) (also defined via the $ricc2 block), do not perform a
geometry optimization, but do a single-point calculation on the MP2 optimized geometries. Before performing the
actual CCSD(T) calculation, you have do run a HF-SCF:

ridft > ridft.out
ccsdf12 > ccsdf12.out

The energies can then be found in ccsdf12.out.
3. In order to measure the angles of the optimized structures, you can use Avogadro or a small TURBOMOLE

script called bend:

bend i j k

with atom numbers i, j, k.
Note down the HCH-angle and total energies for each method, as well as the singlet-triplet splitting
(∆ES-T = Esinglet − Etriplet). The experimental value for the splitting is 9.0 kcal⋅mol-1. The experimentally found
angles are 102.4° for the singlet and 135.5° for the triplet.
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4. p-Benzyne: Repeat the same calculations for p-benzyne. The experimental value for the splitting is -4.2 kcal⋅mol-1.
5. Discuss your findings and compare them to the experiment.

Hint: A HF calculation can be performed by simply omitting the $dft block in the above input file. For post HF
calculations, add the $ricc2 block:

1 $ricc2
2 mp2 # or ccsd(t)
3 geoopt model=mp2 # only for MP2 geometry optimizations

Hint: If you encounter convergence problems in theMP2 or CCSD(T) calculations, try to increase themaximum number
of SCF cycles (e.g. 100) by adding the following keyword:

1 $scfiterlimit <limit>

7.2 Basis Set Convergence

7.2.1 Formic Acid Dimer

Exercise 2.1
Investigate the basis set convergence behavior of different methods for the formic acid dimer.

Approach
1. Create separate directories for the formic acid dimer and monomer and set up geometry optimizations on the TPSS-

D3/def2-TZVP level of theory. To do so, create structures using e.g. Avogadro and convert them to coord
files. Prepare the calculations in the same way as in exercise 1.2. You can use a similar control file and add the
$disp3 -bj keyword for the D3 dispersion correction. DFT geometry optimizations are performed via:

jobex -ri > jobex.out

2. Using the optimized geometries, calculate the dimerization energy (energy difference of one dimer and two
monomers) with HF, TPSS-D3 and MP2 employing the cc-pVXZ (X = D, T, Q) basis sets and their augmented
counterparts (aug-cc-pVXZ). Refer to the table of input options given in section Keywords in control.

3. Tabulate your results and plot the total energies versus the cardinal number of the basis set for each method (e.g.
with gnuplot).

4. Discuss your findings with respect to the basis set superposition error (BSSE) and the basis set incompleteness
(BSIE). Which methods can be considered as converged towards the basis set limit when used with a quadruple-ζ
basis?

Hint:
• The calculations with quadruple-ζ basis can be quite time consuming. Exploiting the symmetry by choosing the
correct point group in the $symmetry block might accelerate the calculations.
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• Remember that you have to perform a HF single-point calculation (using ridft) before you can start the MP2
calculation with ricc2 in the same directory.

7.3 Thermochemistry

7.3.1 Reaction Enthalpies of Gas-Phase Reactions

Exercise 3.1
For small molecules, highly accurate thermochemical results are reachable in quantum chemistry. This means chemical
accuracy with an error of less than 1 kcal/mol. Calculate the reaction enthalpies at 298 K for the following, industrially
important reactions:

CH4 + H2O ⇌ CO + 3 H2 (steam reforming of methane)
N2 + 3 H2 ⇌ 2 NH3 (Haber-Bosch process)

The experimental data are:

Reaction ∆Hr(298K) / kcal⋅mol-1

Steam reforming +49.3
Haber-Bosch -22.5

Approach
1. Optimize the reactants and products using TPSS-D3/def2-TZVP (see earlier exercises and section Keywords in

control, keep in mind the $disp3 -bj keyword).
2. In order to get the thermal corrections from energy to enthalpy at 298 K, do a frequency calculation first. Use the

program aoforce to calculate the vibrational frequencies in TURBOMOLE:

aoforce > aoforce.out

3. Then, calculate the thermal enthalpy corrections∆H298 with the program thermo. It needs a .thermorc input
file from your home directory. Create this file by typing:

echo "0.0 298.15 1.0" > ~/.thermorc

The first number is an internal threshold, the second the temperature in Kelvin and the third the scaling factor for
the vibrational frequencies (1.0 for TPSS). Pipe the output into a separate file, e.g.:

thermo > thermo.out

4. Repeat the optimization for the molecules involved in the Haber-Bosch process with MP2/def2-TZVP. Calcu-
late the deviation of these differently optimized structures by computing the root mean square deviation of the
coordinates:

rmsd <tpss-geometry> <mp2-geometry>
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5. Calculate single-point energies with the hybrid functional B3LYP-D3/def2-TZVP and with MP2/def2-TZVP. Use
the TPSS-D3 geometries and thermal corrections to calculate the reaction enthalpies.

6. Calculate single-point energies with the double hybrid B2PLYP-D3/def2-QZVP and with CCSD(T)/def2-QZVP.
Use the TPSS-D3 geometries and thermal corrections to calculate the reaction enthalpies. Keep in mind that you
have to run an SCF first with ridft. Afterwards, use ricc2 for the double-hybrid and ccsdf12 for the coupled
cluster calculation. The energies can be found in the respective output.

7. Tabulate your results and compare to the experimental values. Whichmethod would you expect to show the smallest
deviation to the experiment? Do your findings match your expectation? Disscuss your outcome.

7.3.2 Heat of Formation of C60 (optional)

Exercise 3.2
Calculate the heat of formation∆H0

f of the C60 molecule by using different methods.

Approach
1. Optimize the geometry of C60 on the TPSS-D3/def2-SVP level in Ih symmetry. In order to do so you can build

a coord file on your own or search for a proper input on the internet. The symmetry can be defined with the
$symmetry ih keyword in control.

2. Calculate the energy of C60 on TPSS/def2-SVP level without D3 corrections, use the TPSS-D3/def2-SVP opti-
mized geometry.

3. Calculate the frequencies of C60 and the thermal corrections the same way as in exercise 3.1.
4. Now, calculate the energy of a single carbon atom on the TPSS/def2-SVP level of theory and the thermal corrections

to ∆H298.15 (use C1 symmetry).
5. Calculate∆H0

f of C60 and compare to experimental results (599 / 635 kcal/mol). You will need the experimental
∆H0

f of a carbon atom: 170.89 kcal/mol.
6. Calculate single-point energies (without dispersion correction) for carbon and C60 with TPSS and HF employing

the def2-TZVP and the def2-QZVP basis sets. Use the results to calculate the heat of formation. (Use the TPSS-
D3/def2-SVP geometries and corrections to ∆H298.15 for this purpose.)

7. Calculate the D3 dispersion correction to the TPSS/def2-QZVP energy and calculate ∆H0
f again. Use the stan-

dalone program dftd3:

dftd3 coord -func tpss -bj

8. Discuss your results.

7.4 Kinetics

7.4.1 Kinetic Isotope Effect

Exercise 4.1
Calculate the kinetic isotope effect for the reaction CH4 + HO⋅ → ⋅CH3 + H2O. From transition state theory,
it is known that
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Fig. 1: Geometry of the transition state.

Approach
1. Calculate the geometry of the transition state for the hydrogen transfer. In order to do this, create a coord file

with a starting geometry that is similar to the one in the picture, with RC−H ≈ 1.2 Å and RO−H ≈ 1.3 Å.
In order to find the transition state, use the following steps:
(a) Prepare a control file. Use the B3LYP-D3/def2-TZVP level of theory. Look at section Keywords in

control if you are unsure. You might need to increase the $scfiterlimit in this exercise.
(b) Consecutively, calculate energy, gradient and hessian:

ridft > ridft.out
rdgrad > rdgrad.out
aoforce > aoforce.out

(c) Verify that there is at least one, relatively large imaginary frequency in the output of aoforce (it also appears
in the vibspectrum file). Then, add the following block to the control file.

1 $statpt
2 itrvec 1

(in general the frequency mode describing the motion of the reaction)
(d) Start the transition state search:

jobex -ri -trans > jobex.out

2. When the search is successful (a GEO_OPT_CONVERGED file has been created in the directory), calculate the
vibrational frequencies of the transition state (aoforce) and verify that there is only one imaginary frequency.
You can have a look at that corresponding normal mode by calling:

tm2molden

Choose your desired options in the short interactive experience. You do not need to pick a name for the input file or
to save the MO data, the latter will make the file rather large (but obviously save the frequency data). You can open
the resulting file (default: molden.input) with gmolden. The normal modes can be visualized by clicking on
“Norm. Mode” on the right side of the menu.

3. Call the program thermo and note down the thermal corrections to the enthalpy.
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4. Repeat the transition state search with CD4 and OH. Therefore, take the initial control file and add an additional
non-default atom weight definition to the 4 affected hydrogen atoms in the $atoms block. You need to look in the
coord file and identify the indices of the h atoms you want to change to deuterium. Say these hydrogen atoms
are atoms 2, 3, 4 and 5, then change the $atoms block to:

1 $atoms
2 basis=def2-TZVP
3 h 2,3,4,5
4 mass=2.014

5. With this input, repeat all aforementioned steps.
6. Calculate the energies and thermal corrections for CH4, CD4 and OH.
7. Finally, calculate kH/kD.

7.5 Solvation

7.5.1 SN2-Reaction

Exercise 5.1
Calculate the potential energy curve for the SN2-reaction of chloromethane with a flouride anion in the gas-phase and in
methanol (ε = 32) between r(C− F) = 2.25 and 8.00 bohr with ε being the dielectric constant of the solvent.

Approach
1. Create structures and calculate the energies of the reactants (one calculation for each reactant) in the gas-phase and

at ε = 32 (methanol). Use the hybrid functional PW6B95 with a def2-TZVP basis and D3 dispersion correction.
Keep in mind that you also have to specify the charge and the solvent model in the control file, e.g.:

1 $eht charge=-1 unpaired=0
2 $cosmo
3 epsilon=32.0

2. To create the potential energy curves, use the shell script below. The script loops over all distances. For each
distance it creates a new directory, performs the constrained geometry optimization and writes the electronic energy
(not necessarily your final reaction energy) into a file called results.dat. Create a new directory and copy and
paste the script to a file named run-scan.sh.

1 #!/usr/bin/env bash
2

3 # Choose directory here
4 calc_dir=scan_vac
5

6 cd $calc_dir
7 if [ -f ./results.dat ]
8 then
9 rm results.dat
10 fi
11

12 read -r -d 'END' template <<-EOF
13 \$coord
14 0.00000000 0.00000000 0.00000000 c f

(continues on next page)
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(continued from previous page)
15 0.00000000 0.00000000 -3.36989165 cl
16 0.00000000 0.00000000 DIST f f
17 -1.00404366 1.73905464 -0.62462166 h
18 -1.00404366 -1.73905464 -0.62462166 h
19 2.00808733 0.00000000 -0.62462166 h
20 \$end
21 END
22 EOF
23

24 for dist in $(seq 2.25 0.25 8.00 | sed s/,/./)
25 do
26

27 # Check for existence of folder
28 if [ -d $dist ]
29 then
30 rm -r $dist
31 fi
32 mkdir $dist
33 cp control $dist
34 pushd $dist
35 echo "$template" | sed "s/DIST/$dist/" > coord
36

37 jobex -ri -c 50
38

39 # Get final energy
40 e=$(sdg energy | tail -1 | gawk '{printf $2}')
41

42 # Write energy to a file
43 echo $dist $e >> ../results.dat
44 popd
45

46 done

A template for the coord file is given directly inline in the script, we will repeat it here to explain a few details.
The f after the atom specification tells TURBOMOLE to keep the coordinates fixed for that atom. DIST ist a
placeholder which will be substituted by the C–F distance.

13 $coord
14 0.00000000 0.00000000 0.00000000 c f
15 0.00000000 0.00000000 -3.36989165 cl
16 0.00000000 0.00000000 DIST f f
17 -1.00404366 1.73905464 -0.62462166 h
18 -1.00404366 -1.73905464 -0.62462166 h
19 2.00808733 0.00000000 -0.62462166 h
20 $end

In order to use the script, you have to make it executable by typing:

chmod +x run-scan.sh

Create subdirectories (e.g. scan_vac and scan_cosmo) for each potential energy curve and place a proper
control file in each of these subdirectories. You will have to adapt the script to your directory names (name in
line 4). The results.dat file will be written to the respective subdirectory. Execute the script by typing:

./run-scan.sh

3. Plot the two curves together (normalize the curves reasonably) and discuss the results. Estimate the activation
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barrier for both cases.

Hint: If the execution of such a script takes some longer time, consider calling it with:

nohup ./run-scan.sh &

Then, you can log out of your shell without killing the calculation.

7.6 Activation Energies

7.6.1 Rearrangement and Dimerization Reactions

Exercise 6.1
Estimate the activation energy for the Claisen rearrangement of allyl-vinyl ether and the dimerization of cyclopentadiene
to endo-dicyclopentadiene (Diels-Alder).

Approach
1. Construct the geometry of reactant(s) and product for each reaction (e.g. using Avogadro). Ensure that the

sequence of atoms is the same in every pair of reactant and product structure.

Hint: Preparing good input structures for transition state searches is absolutely essential, often you can easily
create a product structure from your reactant. Furthermore, this generally eases the sorting of the atoms.

2. Optimize the geometries using GFN2-xTB. GFN2-xTB is a semi-empirical tight-binding based method that em-
ploys a minimal valence basis set and is very efficient for calculating Geometries, vibrational Frequencies and
Noncovalent interactions. For running the geometry optimization, call

xtb start.xyz --opt > opt.out

The optimized geometry is written to the file xtbopt.xyz.
3. Verify that the sequence of atoms is still the same in every pair of reactant and product structure.
4. Perform a reaction path search with the double-ended Growing String Method (GSM) at the GFN2-xTB level:

(a) Create a directory for each reaction.
(b) Have your optimized reactant and product structure sorted and available in xyz format (e.g. starting structure

start.xyz, ending structure end.xyz).
(c) Create a directory scratch and store the starting and ending structures in the file initial0000.xyz:

cat start.xyz end.xyz >> scratch/initial0000.xyz

(d) Place a file named ograd in the respective directory with the following content:

1 #!/bin/bash
2 ofile=orcain$1.in
3 ofileout=orcain$1.out
4 molfile=structure$1

(continues on next page)
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(continued from previous page)
5 ncpu=$2
6 basename="${ofile%.*}"
7 ########## XTB/TM settings: #################
8 cd scratch
9 wc -l < $molfile > $ofile.xyz
10 echo "Dummy for XTB/TM calculation" >> $ofile.xyz
11 cat $molfile >> $ofile.xyz
12

13 xtb $ofile.xyz -grad > $ofile.xtbout
14

15 tm2orca.py $basename
16 rm xtbrestart
17 cd ..

The ograd file has to be made executable:

chmod u+x ograd

e) Place a file named inpfileq in the respective directory with the following content:

1 # FSM/GSM/SSM inpfileq
2

3 ------------- QCHEM Scratch Info ------------------------
4 $QCSCRATCH/ # path for scratch dir. end with "/"
5 GSM_go1q # name of run
6 ---------------------------------------------------------
7

8 ------------ String Info --------------------------------
9 SM_TYPE GSM # SSM, FSM or GSM
10 RESTART 0 # read restart.xyz
11 MAX_OPT_ITERS 160 # maximum iterations
12 STEP_OPT_ITERS 30 # for FSM/SSM
13 CONV_TOL 0.0005 # perp grad
14 ADD_NODE_TOL 0.1 # for GSM
15 SCALING 1.0 # for opt steps
16 SSM_DQMAX 0.8 # add step size
17 GROWTH_DIRECTION 0 # normal/react/prod: 0/1/2
18 INT_THRESH 2.0 # intermediate detection
19 MIN_SPACING 5.0 # node spacing SSM
20 BOND_FRAGMENTS 1 # make IC's for fragments
21 INITIAL_OPT 0 # opt steps first node
22 FINAL_OPT 150 # opt steps last SSM node
23 PRODUCT_LIMIT 100.0 # kcal/mol
24 TS_FINAL_TYPE 0 # any/delta bond: 0/1
25 NNODES 15 # including endpoints
26 ---------------------------------------------------------

For the Claisen rearrangement, you can change the TS_FINAL_TYPE option from 0 to 1 to force GSM to
break a bond upon the transition state search. The number of nodes (keyword NNODES) can be increased for
a more refined search, which (of course) leads to longer computing time. In most cases, 15 nodes should be
sufficient to find a good guess for the transition state.

(f) Start the transition state search by typing:

gsm.orca

(g) After the calculation, you can find the reaction path in the file stringfile.xyz0000, and the transition
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state in scratch/tsq0000.xyz.
5. Prepare relative energy diagrams for both reactions (relative energy vs. reaction coordinate), depict the molecular

structures of both transition states and highlight the most important bond distances.
6. Calculate the activation energy for each reaction.
7. Perform single-point calculations on the starting structure and transtion state structure with PW6B95-D3/def2-

TZVP using TURBOMOLE. Compare the DFT activation energy with the GFN2-xTB energy and discuss the
differences.

8. How would you proceed further to gain more reliable numbers?
9. How feasible is this approach? Where do you see its limits in applicability and usefulness?

7.7 Noncovalent Interactions

7.7.1 Noble Gas ⋅ ⋅ ⋅ Methane

Exercise 7.1
Calculate potential energy curves of the “weak” interactions between the noble gases Ar or Kr and methane.

Fig. 2: Geometry of the CH4 ⋅ ⋅ ⋅ Ar complex.

Approach
1. Calculate the potential energy curve at the BLYP-D3/def2-QZVP level for Ar ⋅ ⋅ ⋅ HCH3 by performing a

geometry optimization with a fixed Ar and H atom. Do this for R(Ar-H) = 4.5 - 15.0 bohr with a stepsize of 0.25
bohr.
Use the run-scan.sh script from exercise 5.1 and adopt it to this task. Substitute the template molecular
geometry by the following one:

13 $coord
14 0.00000000000000 0.00000000000000 DIST ar f
15 0.00000000000000 0.00000000000000 0.00000000000000 h f
16 0.00000000000000 0.00000000000000 -2.06945348098289 c
17 0.97576020317533 1.69006623336522 -2.75977586481614 h
18 0.97576020317533 -1.69006623336522 -2.75977586481614 h
19 -1.95152040635065 0.00000000000000 -2.75977586481614 h
20 $end

You also have to modify the directory names and the distances. Prepare a control file for the BLYP-D3/def2-
QZVP calculations including the $disp3 -bj and $symmetry c1 keywords.
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2. Repeat the calculations for BLYP/def2-QZVP and MP2/def2-QZVP. For BLYP, just omit the $disp3 block.
For MP2, clear the $dft and $disp3 blocks and insert proper settings under $ricc2 and $denconv. In the
latter case, don’t forget to change the jobex command in the script to:

37 jobex -ri -level cc2 -c 50

To get the final MP2 energy for each distance, also change the sdg command to:

40 e=$(grep "Total Energy" job.last | gawk '{print $4}')

3. Repeat the calculations for Kr ⋅ ⋅ ⋅ HCH3 (substitute ar by kr in the template) with BLYP-D3/def2-QZVP,
BLYP/def2-QZVP and MP2/def2-QZVP.

4. Plot the curves (normalize to the dissociation limit) and discuss your findings.

7.8 Spectroscopy

7.8.1 IR-Spectrum of 1,4-Benzoquinone

Exercise 8.1
Calculate the IR-spectrum of 1,4-benzoquinone using DFT and HF, and compare the results to the experimental spectrum
given below.

Approach
1. Create a coord file for 1,4-benzoquinone.
2. Optimize the geometry with TURBOMOLE on the HF-D3/def2-SVP level of theory.
3. Calculate the normal modes with aoforce.
4. Call tm2molden and check the normal modes with gmolden the same way as in exercise 4.1.
5. Assign each dipole-allowed normal mode to an experimental one and calculate the scaling factor fscal = νexp/νcalc.
6. Repeat everything with TPSS-D3/def2-SVP and discuss your findings.

Hint: If you obtain imaginary frequencies, try to start the geometry optimization from a slightly distorted structure.
Check if the imaginary frequencies vanish.

7.8.2 The Color of Indigo

Exercise 8.2
Calculate the color of indigo with three different methods: time-dependent Hartree-Fock (TD-HF) and time-dependent
DFT (TD-DFT) with two different functionals (PBE and PBE0).

Approach
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Fig. 3: IR spectrum of 1,4-benzoquinone in KBr.

Fig. 4: Structure of indigo.
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1. In this exercise, please use TURBOMOLE’s interactive input generator define to create the control file. To
do so, create the geometry of an indigo molecule (figure below) and place the coord file in its own directory.
To start the input generator, navigate to the directory containing the coord file, type the following command and
answer all questions that appear.

define

Prepare an input on the TPSS-D3/def2-SVP level and optimize the geometry. In the define dialogue, you can skip
the first two questions, then choose the input geometry file via:

a coord

In this menu, you will find a header telling you the number of atoms of your molecule and its symmetry point
group (Schoenflies symbol). If this is not yet correct (the molecule does not have C1 symmetry), type desy
1d-3 or some larger value to loosen the symmetry determination threshold until the correct point group is
recognized. If the symmetry is still not recognized correctly, you can set the point group manually with the sy
command. In this case make sure TURBOMOLE does not add atoms to your coord file.
Leave the molecular geometry menu and then do not choose internal coordinates. In the atomic attribute
definition menu, you can choose the same basis for all atoms by typing e.g.:

b all def2-SVP

Afterwards, choose an extended Hückel guess for the MOs with default parameters (don’t worry about a small
HOMO/LUMO gap). In the last general menu, go to the dft submenu and type e.g.:

on
func tpss

Don’t forget to also choose the bj option in the dsp submenu for the D3 disperion correction (activating the RI
approximation in the ri submenu is also recommended). When you are finished, you will find a control file in
your directory containing all keywords you already know and more. If everything is correct, you are now ready to
run the geometry optimization.

Hint: Try to navigate through the define dialogue a few times and explore it by yourself to get familiar with it.
If you still can’t figure out a certain aspect, feel free to ask your lab assistant.

2. Prepare a HF-D3/def2-SVP single-point calculation in the same way by using define, but do not turn on the
dft option. Do not use the RI approximation here and run:

dscf > dscf.out

In order to do the subsequent TD-HF (or a TD-DFT) calculation, add the following two blocks so the control
file:

1 $scfinstab rpas
2 $soes
3 bu 1

Then, run:
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escf > escf.out

3. For the TD-DFT calculations repeat the above procedure with PBE-D3/def2-SVP and PBE0-D3/def2-SVP (now
with RI approximation). Use proper settings during the define dialogue as well as in control and run:

ridft > ridft.out
escf > escf.out

4. Discuss the excitation energies for all three methods; which method would predict (at least approximately) the
correct color for indigo? How do you explain the errors?

7.8.3 NMR Parameters

The computation of NMR parameters can be done with the ORCA program package. A simple input for the calculation
of the NMR chemical shielding of CH3NH2 with the PBE functional and a pcSseg-2 basis set is presented below. The
pcSseg-n basis sets are special segmented contracted basis sets otimized for the calculation of NMR shieldings. (For more
information see: Jensen, F., J. Chem. Theory Comput. 2015, 11, 132 - 138.)

1 !PBE RI pcSseg-2 def2/J NMR
2

3 *xyzfile 0 1 input.xyz

At the end of the ORCA output, a summary of the calculated NMR absolute chemical shieldings can be found.
Exemplary output for CH3NH2:

1 --------------------------
2 CHEMICAL SHIELDING SUMMARY (ppm)
3 --------------------------
4

5

6 Nucleus Element Isotropic Anisotropy
7 ------- ------- ------------ ------------
8 0 C 152.992 46.821
9 1 H 29.025 8.165
10 2 H 28.567 10.286
11 3 N 242.339 43.497
12 4 H 29.033 8.176
13 5 H 31.095 13.580
14 6 H 31.120 13.593

Exercise 8.3
Calculate the 13C-NMR chemical shifts δ for a number of organic compounds and compare the results to experimental
data. In addition, investigate the correlation of the π-electron density with δ.

Approach
1. Optimize the geometries of the compounds A – G and the reference molecule Si(CH3)4 (TMS) on the PBEh-3c

level of theory (how to use PBEh-3c is explained in the ORCA manual).
2. Calculate the 13C-NMR chemical shieldings and shifts δ for compounds A – G with TMS as reference at

PBE/pcSseg-2 level of theory (use this level in all the following calculations if not stated otherwise). Given the
isotropic NMR shielding constants σ of the compound (c) and the reference (ref.), the chemical shift δc,ref. is

7.8. Spectroscopy 95



Advanced Quantum Chemistry Methods, Release SoSe2024

Fig. 5: Lewis structures of seven organic compounds A – G with their experimentally obtained chemical shift as well as
four aromatic compounds Ar-1 - Ar-4.

defined as

δc,ref. = σref. − σc.

Hint: Computational time can be saved by calculating the shieldings only for carbon atoms instead of all atoms.
How to do so is described in the ORCA manual.

3. Compare your results with the experimental values and calculate the mean deviation (MD) and the mean absolute
deviation (MAD).

MD =
1

N

N∑
i=1

(δcalc. − δexp.) MAD =
1

N

N∑
i=1

(|δcalc. − δexp.|)

4. Repeat the calculations for the four aromatic compoundsAr-1 –Ar-4 and plot the calculated chemical shift against
the formal π-electron density (ρπ = nelπ/natπ ). Discuss your results.

5. The experimental 17O- and 13C-NMR chemical shifts of the carbonyl function in acetone are shifted by 75.5 and
-18.9 ppm, respectively, if an acetone molecule is transferred from the gas phase to aqueous solution. Try to
reproduce these values by considering solvation effects by the implicit solvent model CPCM. You can switch on
the implicit solvent by adding the CPCM(<solvent>) keyword (example: CPCM(toluene)) to your ORCA
input. For carbon, the reference is TMS, for oxygen it is water.

6. Try to estimate which effect is larger – the inclusion of an implicit solvation in the NMR calculation or the inclusion
of the implicit solvent in the geometry optimization.

Hint: There are two options (gas/solution) for each calculation, the geometry optimization and the shielding
calculation. Compare all possibilities.
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7. Calculate the 1H-NMR chemical shifts forH and I in the gas-phase at the PBE/pcSseg-2//PBEh-3c level of theory
(again use TMS as the reference). Discuss your observations regarding the chemical shift of the methine proton in
both compounds. Give a short explanation of your findings.

Fig. 6: Lewis structures of in- (H) and out- (I) [34,10][7]Metacyclophane.

Hint: The NMR chemical shielding calculations for H and I may be time consuming, consider to run them over
night.

7.8. Spectroscopy 97


	Setup Prerequisites
	Windows 10
	Install MSYS2
	Install WSL
	Install Linux Distribution

	Ubuntu
	Fortran package manager from conda

	MacOS
	Installing with Homebrew


	Working on Linux
	Login
	Shell in a nutshell
	Editors
	VSCode
	Vim


	Introduction to Fortran
	General Principles
	Compiling and Running a Program
	The Fortran package manager
	Introducing Variables
	Performing Simple Computing Tasks
	Accuracy of Numbers
	Logical Constructs
	Repeating Tasks
	Fields and Arrays of Data
	Functions and Subroutines
	Multidimensional Arrays
	Character Constants and Variables
	Interacting with Files
	Application
	Derived Types

	SCF program
	Restricted Hartree–Fock
	Getting Input
	Classical Contributions
	Basis Set Setup
	One-Electron Integrals
	Symmetric Orthonormalizer
	Initial Guess
	Hartree-Fock Energy
	Two-Electron Integrals
	Self Consistent Field Procedure
	Dissociation Curves

	Properties
	Partial Charges
	Charge Density

	Geometry Optimization
	Numerical Derivatives
	Steepest Descent

	Unrestricted Hartree-Fock
	Spin Contamination

	Møller–Plesset Perturbation Theory

	Recommendations
	General Recommendations
	Working with this Script
	Trouble Shooting

	Software Recommendations
	Logging in to your work machine
	The easy way
	The right way
	Tips and Tricks

	X-Server or How to make your graphical connection work (optional)
	Software for Visualization of Molecules
	Plotting
	Summary


	Quantum Chemistry Software
	Setting up the Software
	Program Packages
	TURBOMOLE
	The control file

	ORCA

	Keywords in control
	Short ORCA Reference

	Exercises
	Electron Correlation
	Multireference Methods
	Carbenes

	Basis Set Convergence
	Formic Acid Dimer

	Thermochemistry
	Reaction Enthalpies of Gas-Phase Reactions
	Heat of Formation of C60 (optional)

	Kinetics
	Kinetic Isotope Effect

	Solvation
	SN2-Reaction

	Activation Energies
	Rearrangement and Dimerization Reactions

	Noncovalent Interactions
	Noble Gas ⋅ ⋅ ⋅ Methane

	Spectroscopy
	IR-Spectrum of 1,4-Benzoquinone
	The Color of Indigo
	NMR Parameters



